lTemperature Sensing in Modular Microfluidic Architectures

被引:10
作者
Bhargava, Krisna C. [1 ]
Thompson, Bryant [2 ]
Tembhekar, Anoop [2 ]
Malmstadt, Noah [1 ]
机构
[1] Univ So Calif, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA
[2] Univ So Calif, Dept Biomed Engn, Los Angeles, CA 90089 USA
基金
美国国家卫生研究院;
关键词
modular microfluidics; thermal sensor; flow sensor; CALORIMETER; SENSOR; MEMS;
D O I
10.3390/mi7010011
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A discrete microfluidic element with integrated thermal sensor was fabricated and demonstrated as an effective probe for process monitoring and prototyping. Elements were constructed using stereolithography and market-available glass-bodied thermistors within the modular, standardized framework of previous discrete microfluidic elements demonstrated in the literature. Flow rate-dependent response due to sensor self-heating and microchannel heating and cooling was characterized and shown to be linear in typical laboratory conditions. An acid-base neutralization reaction was performed in a continuous flow setting to demonstrate applicability in process management: the ratio of solution flow rates was varied to locate the equivalence point in a titration, closely matching expected results. This element potentially enables complex, three-dimensional microfluidic architectures with real-time temperature feedback and flow rate sensing, without application specificity or restriction to planar channel routing formats.
引用
收藏
页数:12
相关论文
共 17 条
[1]  
Bhargava K.C., 2015, SCI REP, P5
[2]   Discrete elements for 3D microfluidics [J].
Bhargava, Krisna C. ;
Thompson, Bryant ;
Malmstadt, Noah .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (42) :15013-15018
[3]  
Bruus H., 2007, Theoretical microfluidics, V18
[4]  
Burger J., 2011, P SOC PHOTO-OPT INS, P8066
[5]   An integrated nanoliter DNA analysis device [J].
Burns, MA ;
Johnson, BN ;
Brahmasandra, SN ;
Handique, K ;
Webster, JR ;
Krishnan, M ;
Sammarco, TS ;
Man, PM ;
Jones, D ;
Heldsinger, D ;
Mastrangelo, CH ;
Burke, DT .
SCIENCE, 1998, 282 (5388) :484-487
[6]   Thermo-resistance based micro-calorimeter for continuous chemical enthalpy measurements [J].
Casquillas, G. Velve ;
Bertholle, F. ;
Le Berre, M. ;
Meance, S. ;
Malaquin, L. ;
Greffet, J. J. ;
Chen, Y. .
MICROELECTRONIC ENGINEERING, 2008, 85 (5-6) :1367-1369
[7]   Dynamic Thermal Sensor-Principles in MEMS for Fluid Characterization [J].
Ernst, Herbert ;
Jachimowicz, Artur ;
Urban, Gerald .
IEEE SENSORS JOURNAL, 2001, 1 (04) :361-367
[8]   Thermal characterisation of a direction dependent flow sensor [J].
Fürjes, P ;
Légrádi, G ;
Dücso, C ;
Aszódi, A ;
Bársony, I .
SENSORS AND ACTUATORS A-PHYSICAL, 2004, 115 (2-3) :417-423
[9]   Thermal analysis of chemical reaction with a continuous microfluidic calorimeter [J].
Hany, Cindy ;
Lebrun, Helene ;
Pradere, Christophe ;
Toutain, Jean ;
Batsale, Jean-Christophe .
CHEMICAL ENGINEERING JOURNAL, 2010, 160 (03) :814-822
[10]   Dual thermopile integrated microfluidic calorimeter for biochemical thermodynamics [J].
Kwak, B. S. ;
Kim, B. S. ;
Cho, H. H. ;
Park, J. S. ;
Jung, H. I. .
MICROFLUIDICS AND NANOFLUIDICS, 2008, 5 (02) :255-262