FBA-AMNET: Foreground-Background Aware Atrous Multiscale Networks for Stereo Disparity Estimation

被引:0
作者
Du, Xianzhi [1 ]
El-Khamy, Mostafa [1 ]
Lee, Jungwon [1 ]
机构
[1] Samsung Semicond Inc, SOC R&D Lab, San Diego, CA 92121 USA
来源
2020 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE) | 2020年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose novel networks for stereo disparity estimation. First, deep features are extracted using efficient depthwise-separable convolutions. Next, the stereo matching costs are calculated from the deep features with a novel extended cost volume. Then, rich multiscale contextual information is aggregated with the proposed atrous multiscale network (AMNet). The proposed foreground-background aware network (FBA-AMNET) is trained with an iterative multi-task learning strategy to discriminate between foreground and background objects at multiple scales. The proposed networks advance the state of the art on challenging disparity estimation benchmarks, such as the KITTI 2012, KITTI 2015, Sceneflow, and Middlebury stereo benchmarks.
引用
收藏
页码:743 / 744
页数:2
相关论文
共 8 条
[1]   Pyramid Stereo Matching Network [J].
Chang, Jia-Ren ;
Chen, Yong-Sheng .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :5410-5418
[2]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[3]  
Geiger A, 2012, PROC CVPR IEEE, P3354, DOI 10.1109/CVPR.2012.6248074
[4]   A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation [J].
Mayer, Nikolaus ;
Ilg, Eddy ;
Hausser, Philip ;
Fischer, Philipp ;
Cremers, Daniel ;
Dosovitskiy, Alexey ;
Brox, Thomas .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :4040-4048
[5]  
Menze M., IEEE CVPR 2015
[6]   A taxonomy and evaluation of dense two-frame stereo correspondence algorithms [J].
Scharstein, D ;
Szeliski, R .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2002, 47 (1-3) :7-42
[7]   High-Resolution Stereo Datasets with Subpixel-Accurate Ground Truth [J].
Scharstein, Daniel ;
Hirschmuller, Heiko ;
Kitajima, York ;
Krathwohl, Greg ;
Nesic, Nera ;
Wang, Xi ;
Westling, Porter .
PATTERN RECOGNITION, GCPR 2014, 2014, 8753 :31-42
[8]   SegStereo: Exploiting Semantic Information for Disparity Estimation [J].
Yang, Guorun ;
Zhao, Hengshuang ;
Shi, Jianping ;
Deng, Zhidong ;
Jia, Jiaya .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :660-676