The epicardium and epicardial-derived cells:: Multiple functions in cardiac development

被引:38
作者
Muñoz-Chápuli, R [1 ]
Macías, D [1 ]
González-Iriarte, M [1 ]
Carmona, R [1 ]
Atencia, G [1 ]
Pérez-Pomares, JM [1 ]
机构
[1] Univ Malaga, Fac Ciencias, Dept Biol Anim, E-29071 Malaga, Spain
来源
REVISTA ESPANOLA DE CARDIOLOGIA | 2002年 / 55卷 / 10期
关键词
epicardium; epithelial-mesenchymal transition; vasculogenesis; differentiation;
D O I
10.1016/S0300-8932(02)76758-4
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The epicardium develops from an extracardiac primordium, the proepicardium, which is constituted by a cluster of mesothelial cells located on the cephalic and ventral surface of the liver-sinus venosus limit (avian embryos) or on the pericardial side of the septum transversum (mammalian embryos). The proepicardium contacts the myocardial surface and gives rise to a mesothelium, which grows and progressively lines the myocardium. The epicardium generates, through a process of epithelial-mesenchymal transition, a population of epicardial-derived cells (EPDC). EPDC contribute to the development of cardiac connective tissue, fibroblasts, and the smooth muscle of cardiac vessels. Recent data suggest that EPDC can also differentiate into endothelial cells of the primary subepicardial vascular plexus. If this is confirmed, EPDC would show the same developmental properties that characterize the stem-cell-derived bipotential vascular progenitors recently described, whose differentiation into endothelium and smooth muscle is regulated by exposure to VEGF and PDGF-BB, respectively. Aside from their function in the development of cardiac connective and vascular tissue, EPDC also play an essential modulating role in the differentiation of the compact ventricular layer of the myocardium, a role which might be regulated by the transcription factor WT1 and the production of retinoic acid.
引用
收藏
页码:1070 / 1082
页数:13
相关论文
共 120 条
[1]   Misexpression of noggin leads to septal defects in the outflow tract of the chick heart [J].
Allen, SP ;
Bogardi, JP ;
Barlow, AJ ;
Mir, SA ;
Qayyum, SR ;
Verbeek, FJ ;
Anderson, RH ;
Francis-West, PH ;
Brown, NA ;
Richardson, MK .
DEVELOPMENTAL BIOLOGY, 2001, 235 (01) :98-109
[2]   The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells [J].
Batlle, E ;
Sancho, E ;
Franci, C ;
Domínguez, D ;
Monfar, M ;
Baulida, J ;
de Herreros, AG .
NATURE CELL BIOLOGY, 2000, 2 (02) :84-89
[3]   DEVELOPMENT OF THE ORIGIN OF THE CORONARY-ARTERIES, A MATTER OF INGROWTH OR OUTGROWTH [J].
BOGERS, AJJC ;
GITTENBERGERDEGROOT, AC ;
POELMANN, RE ;
PEAULT, BM ;
HUYSMANS, HA .
ANATOMY AND EMBRYOLOGY, 1989, 180 (05) :437-441
[4]  
Bouchey D, 1996, CARDIOVASC RES, V31, pE104
[5]   EMBRYONIC EXPRESSION OF TENASCIN-X SUGGESTS A ROLE IN LIMB, MUSCLE, AND HEART DEVELOPMENT [J].
BURCH, GH ;
BEDOLLI, MA ;
MCDONOUGH, S ;
ROSENTHAL, SM ;
BRISTOW, J .
DEVELOPMENTAL DYNAMICS, 1995, 203 (04) :491-504
[6]   The transcription factor Snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression [J].
Cano, A ;
Pérez-Moreno, MA ;
Rodrigo, I ;
Locascio, A ;
Blanco, MJ ;
del Barrio, MG ;
Portillo, F ;
Nieto, MA .
NATURE CELL BIOLOGY, 2000, 2 (02) :76-83
[7]   Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele [J].
Carmeliet, P ;
Ferreira, V ;
Breier, G ;
Pollefeyt, S ;
Kieckens, L ;
Gertsenstein, M ;
Fahrig, M ;
Vandenhoeck, A ;
Harpal, K ;
Eberhardt, C ;
Declercq, C ;
Pawling, J ;
Moons, L ;
Collen, D ;
Risau, W ;
Nagy, A .
NATURE, 1996, 380 (6573) :435-439
[8]   Immunolocalization of the transcription factor Slug in the developing avian heart [J].
Carmona, R ;
González-Iriarte, M ;
Macías, D ;
Pérez-Pomares, JM ;
García-Garrido, L ;
Muñoz-Chápuli, R .
ANATOMY AND EMBRYOLOGY, 2000, 201 (02) :103-109
[9]   Localization of the Wilms' tumour protein WT1 in avian embryos [J].
Carmona, R ;
González-Iriarte, M ;
Pérez-Pomares, JM ;
Muñoz-Chápuli, R .
CELL AND TISSUE RESEARCH, 2001, 303 (02) :173-186
[10]  
Chen J, 1998, DEVELOPMENT, V125, P1943