The effect of illumination on the formation of metal halide perovskite films

被引:268
作者
Ummadisingu, Amita [1 ]
Steier, Ludmilla [1 ,2 ]
Seo, Ji-Youn [1 ]
Matsui, Taisuke [1 ,3 ]
Abate, Antonio [1 ,4 ]
Tress, Wolfgang [1 ]
Gratzel, Michael [1 ]
机构
[1] Ecole Polytech Fed Lausanne, LPI, Inst Chem Sci & Engn, Stn 6, CH-1015 Lausanne, Switzerland
[2] Imperial Coll London, Dept Chem, London SW7 2AZ, England
[3] Panasonic Corp, Adv Res Div, Adv Funct Mat Res Grp, 1006 Kadoma, Kadoma, Osaka 5718501, Japan
[4] Mat & Energie GmbH, Helmholtz Zentrum Berlin, Kekulestr 5, D-12489 Berlin, Germany
基金
瑞士国家科学基金会;
关键词
SOLAR-CELLS; PHOTOVOLTAIC PERFORMANCE; CRYSTAL-GROWTH; THIN-FILMS; KINETICS; CHARGE; PBI2;
D O I
10.1038/nature22072
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Optimizing the morphology of metal halide perovskite films is an important way to improve the performance of solar cells(1) when these materials are used as light harvesters(2), because film homogeneity is correlated with photovoltaic performance(3). Many device architectures and processing techniques have been explored with the aim of achieving high-performance devices(4), including single-step deposition(5), sequential deposition(6,7) and anti-solvent methods(1,8). Earlier studies have looked at the influence of reaction conditions on film quality(3), such as the concentration of the reactants9,10 and the reaction temperature(11). However, the precise mechanism of the reaction and the main factors that govern it are poorly understood. The consequent lack of control is the main reason for the large variability observed in perovskite morphology and the related solar-cell performance(2,3). Here we show that light has a strong influence on the rate of perovskite formation and on film morphology in both of the main deposition methods currently used: sequential deposition and the anti-solvent method. We study the reaction of a metal halide (lead iodide) with an organic compound (methylammonium iodide) using confocal laser scanning fluorescence microscopy and scanning electron microscopy. The lead iodide crystallizes before the intercalation of methylammonium iodide commences, producing the methylammonium lead iodide perovskite. We find that the formation of perovskite via such a sequential deposition is much accelerated by light. The influence of light on morphology is reflected in a doubling of solar-cell efficiency. Conversely, using the anti-solvent method to form methyl ammonium lead iodide perovskite in a single step from the same starting materials, we find that the best photovoltaic performance is obtained when films are produced in the dark. The discovery of light-activated crystallization not only identifies a previously unknown source of variability in opto-electronic properties, but also opens up new ways of tuning morphology and structuring perovskites for various applications.
引用
收藏
页码:208 / +
页数:16
相关论文
共 30 条
[1]   In Situ Intercalation Dynamics in Inorganic-Organic Layered Perovskite Thin Films [J].
Ahmad, Shahab ;
Kanaujia, Pawan K. ;
Niu, Wendy ;
Baumberg, Jeremy J. ;
Prakash, G. Vijaya .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (13) :10238-10247
[2]   Thermodynamic regulation of CH3NH3PbI3 crystal growth and its effect on photovoltaic performance of perovskite solar cells [J].
Ahn, Namyoung ;
Kang, Seong Min ;
Lee, Jin-Wook ;
Choi, Mansoo ;
Park, Nam-Gyu .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (39) :19901-19906
[3]  
[Anonymous], ELECTROCHEMICAL METH
[4]  
Balluffi RW, 2005, KINETICS OF MATERIALS, P459
[5]   Efficient luminescent solar cells based on tailored mixed-cation perovskites [J].
Bi, Dongqin ;
Tress, Wolfgang ;
Dar, M. Ibrahim ;
Gao, Peng ;
Luo, Jingshan ;
Renevier, Clementine ;
Schenk, Kurt ;
Abate, Antonio ;
Giordano, Fabrizio ;
Baena, Juan-Pablo Correa ;
Decoppet, Jean-David ;
Zakeeruddin, Shaik Mohammed ;
Nazeeruddin, Mohammad Khaja ;
Gratzel, Michael ;
Hagfeldt, Anders .
SCIENCE ADVANCES, 2016, 2 (01)
[6]   Unraveling the Effect of PbI2 Concentration on Charge Recombination Kinetics in Perovskite Solar Cells [J].
Bi, Dongqin ;
El-Zohry, Ahmed M. ;
Hagfeldt, Anders ;
Boschloo, Gerrit .
ACS PHOTONICS, 2015, 2 (05) :589-594
[7]   Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J].
Burschka, Julian ;
Pellet, Norman ;
Moon, Soo-Jin ;
Humphry-Baker, Robin ;
Gao, Peng ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael .
NATURE, 2013, 499 (7458) :316-+
[8]   Unbroken Perovskite: Interplay of Morphology, Electro-optical Properties, and Ionic Movement [J].
Correa-Baena, Juan-Pablo ;
Anaya, Miguel ;
Lozano, Gabriel ;
Tress, Wolfgang ;
Domanski, Konrad ;
Saliba, Michael ;
Matsui, Taisuke ;
Jacobsson, Tor Jesper ;
Calvo, Mauricio E. ;
Abate, Antonio ;
Gratzel, Michael ;
Miguez, Hernan ;
Hagfeldt, Anders .
ADVANCED MATERIALS, 2016, 28 (25) :5031-5037
[9]   The light and shade of perovskite solar cells [J].
Graetzel, Michael .
NATURE MATERIALS, 2014, 13 (09) :838-842
[10]   Mesoscopic photosystems for solar light harvesting and conversion: facile and reversible transformation of metal-halide perovskites [J].
Harms, Hauke Arne ;
Tetreault, Nicolas ;
Pellet, Norman ;
Bensimon, Michael ;
Graetzel, Michael .
FARADAY DISCUSSIONS, 2014, 176 :251-269