Extremal digraphs for an upper bound on the Roman domination number

被引:3
作者
Ouldrabah, Lyes [1 ]
Blidia, Mostafa [1 ]
Bouchou, Ahmed [2 ]
机构
[1] Univ Blida 1, Dept Math, Blida, Algeria
[2] Univ Medea, Dept Math, Medea, Algeria
关键词
Roman domination; Digraph; Oriented graph; Tournament;
D O I
10.1007/s10878-019-00401-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Let D = (V, A) be a digraph. A Roman dominating function of a digraph D is a function f : V -> {0, 1, 2} such that every vertex u for which f (u) = 0 has an in-neighbor v for which f (v) = 2. The weight of a Roman dominating function is the value f (V) = Sigma(u is an element of V) f (u). The minimum weight of a Roman dominating function of a digraph D is called the Roman domination number of D, denoted by gamma(R)(D). In this paper, we characterize some special classes of oriented graphs, namely out-regular oriented graphs and tournaments satisfying gamma(R)(D) = n - Delta(+) (D) + 1. Moreover, we characterize digraphs D for which the equality gamma(R)(D)+gamma(R)((D) over bar) = n+3 holds, where (D) over bar is the complement of D. Finally, we prove that the problem of deciding whether an oriented graph D satisfies gamma(R)(D) = n - Delta(+) (D) + 1 is CO-NP-complete.
引用
收藏
页码:667 / 679
页数:13
相关论文
共 14 条
[1]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theory of NP-Completeness
[2]   EXTREMAL PROBLEMS FOR ROMAN DOMINATION [J].
Chambers, Erin W. ;
Kinnersley, Bill ;
Prince, Noah ;
West, Douglas B. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (03) :1575-1586
[3]   Roman domination in graphs [J].
Cockayne, EJ ;
Dreyer, PA ;
Hedetniemi, SM ;
Hedetniemi, ST .
DISCRETE MATHEMATICS, 2004, 278 (1-3) :11-22
[4]   On the Roman domination number of a graph [J].
Favaron, O. ;
Karami, H. ;
Khoeilar, R. ;
Sheikholeslami, S. M. .
DISCRETE MATHEMATICS, 2009, 309 (10) :3447-3451
[5]   A NOTE ON ROMAN DOMINATION OF DIGRAPHS [J].
Hao, Guoliang ;
Xie, Zhihong ;
Chen, Xiaodan .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (01) :13-21
[6]  
Haynes T. W., 1998, FUNDAMENTALS DOMINAT, V1st, DOI [10.1201/9781482246582, DOI 10.1201/9781482246582]
[7]  
Haynes T. W., 1998, DOMINATION GRAPHS AD
[8]  
Kamaraj M, 2011, ROMAN DOMINATI UNPUB
[9]   Upper bounds on Roman domination numbers of graphs [J].
Liu, Chun-Hung ;
Chang, Gerard Jennhwa .
DISCRETE MATHEMATICS, 2012, 312 (07) :1386-1391
[10]  
Rad NJ, 2012, UTILITAS MATHEMATICA, V89, P79