Dimensionality reduction of complex dynamical systems

被引:25
作者
Tu, Chengyi [1 ,2 ,3 ]
D'Odorico, Paolo [3 ]
Suweis, Samir [4 ]
机构
[1] Yunnan Univ, Sch Ecol & Environm Sci, Kunming 650091, Yunnan, Peoples R China
[2] Yunnan Key Lab Plant Reprod Adaptat & Evolutionar, Kunming 650091, Yunnan, Peoples R China
[3] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA
[4] Univ Padua, Dept Phys & Astron G Galilei, I-35131 Padua, Italy
关键词
RESILIENCE; BIODIVERSITY; STABILITY; FOREST; REACTIVITY; INDICATOR;
D O I
10.1016/j.isci.2020.101912
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
One of the outstanding problems in complexity science and engineering is the study of high-dimensional networked systems and of their susceptibility to transitions to undesired states as a result of changes in external drivers or in the structural properties. Because of the incredibly large number of parameters controlling the state of such complex systems and the heterogeneity of its components, the study of their dynamics is extremely difficult. Here we propose an analytical framework for collapsing complex N-dimensional networked systems into an S+1-dimensional manifold as a function of S effective control parameters with S << N. We test our approach on a variety of real-world complex problems showing how this new framework can approximate the system's response to changes and correctly identify the regions in the parameter space corresponding to the system's transitions. Our work offers an analytical method to evaluate optimal strategies in the design or management of networked systems.
引用
收藏
页数:41
相关论文
共 58 条
  • [1] Stability criteria for complex ecosystems
    Allesina, Stefano
    Tang, Si
    [J]. NATURE, 2012, 483 (7388) : 205 - 208
  • [2] Alon U., 2020, An Introduction to Systems Biology: Design Principles of Biological Circuits, V2, DOI [10.1201/978142, DOI 10.1201/978142]
  • [3] [Anonymous], 2006, Critical Phenomena in Natural Sciences. Chaos, Fractals, Selforganization and Disorder: Concepts and Tools, DOI DOI 10.1017/CBO9781107415324.004
  • [4] Resilience, reactivity and variability: A mathematical comparison of ecological stability measures
    Arnoldi, J-F.
    Loreau, M.
    Haegeman, B.
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2016, 389 : 47 - 59
  • [5] Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation
    Barlow, Jos
    Lennox, Gareth D.
    Ferreira, Joice
    Berenguer, Erika
    Lees, Alexander C.
    Mac Nally, Ralph
    Thomson, James R.
    de Barros Ferraz, Silvio Frosini
    Louzada, Julio
    Fonseca Oliveira, Victor Hugo
    Parry, Luke
    de Castro Solar, Ricardo Ribeiro
    Vieira, Ima C. G.
    Aragao, Luiz E. O. C.
    Begotti, Rodrigo Anzolin
    Braga, Rodrigo F.
    Cardoso, Thiago Moreira
    de Oliveira, Raimundo Cosme, Jr.
    Souza, Carlos M., Jr.
    Moura, Nargila G.
    Nunes, Samia Serra
    Siqueira, Joao Victor
    Pardini, Renata
    Silveira, Juliana M.
    Vaz-de-Mello, Fernando Z.
    Stulpen Veiga, Ruan Carlo
    Venturieri, Adriano
    Gardner, Toby A.
    [J]. NATURE, 2016, 535 (7610) : 144 - +
  • [6] Urban gardens, agriculture, and water management: Sources of resilience for long-term food security in cities
    Barthel, Stephan
    Isendahl, Christian
    [J]. ECOLOGICAL ECONOMICS, 2013, 86 : 224 - 234
  • [7] Boyd J.P., 2001, Chebyshev and Fourier Spectral Methods
  • [8] Rising variance: a leading indicator of ecological transition
    Carpenter, SR
    Brock, WA
    [J]. ECOLOGY LETTERS, 2006, 9 (03) : 308 - 315
  • [9] Accelerated modern human-induced species losses: Entering the sixth mass extinction
    Ceballos, Gerardo
    Ehrlich, Paul R.
    Barnosky, Anthony D.
    Garcia, Andres
    Pringle, Robert M.
    Palmer, Todd M.
    [J]. SCIENCE ADVANCES, 2015, 1 (05):
  • [10] Cenci S., 2017, bioRxiv