The initiation of coronal mass ejections by magnetic flux emergence

被引:17
作者
Dubey, G. [1 ]
van der Holst, B. [1 ]
Poedts, S. [1 ]
机构
[1] Katholieke Univ Leuven, Ctr Plasma Astrofys, B-3001 Heverlee, Belgium
关键词
Sun : coronal mass ejections (CMEs); Sun : magnetic fields; magnetohydrodynamics (MHD);
D O I
10.1051/0004-6361:20054719
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Aims. The initiation of solar Coronal Mass Ejections (CMEs) is studied in the framework of computational Magneto- Hydro-Dynamics (MHD). Methods. The initial configuration includes a magnetic flux rope that is embedded in a gravitationally stratified solar atmosphere with a background dipole magnetic field in spherical, axi- symmetric geometry. The flux rope is in equilibrium due to an image current below the photosphere. An emerging magnetic flux triggering mechanism is used to make this equilibrium configuration unstable. Results. When the magnetic flux emerges within the filament below the flux rope this results in a catastrophic behavior similar to earlier, more simple models. As a result, the flux rope rises and a current sheet forms below it. It is shown that the magnetic reconnection in the current sheet below the flux rope in combination with the outward curvature forces results in a fast ejection of the flux rope as observed for solar CMEs. We have done a parameter study of the effect of the flux emergence rate on the velocity and the acceleration of the resulting CMEs.
引用
收藏
页码:927 / 934
页数:8
相关论文
共 50 条
[41]   Decoding the Pre-Eruptive Magnetic Field Configurations of Coronal Mass Ejections [J].
S. Patsourakos ;
A. Vourlidas ;
T. Török ;
B. Kliem ;
S. K. Antiochos ;
V. Archontis ;
G. Aulanier ;
X. Cheng ;
G. Chintzoglou ;
M. K. Georgoulis ;
L. M. Green ;
J. E. Leake ;
R. Moore ;
A. Nindos ;
P. Syntelis ;
S. L. Yardley ;
V. Yurchyshyn ;
J. Zhang .
Space Science Reviews, 2020, 216
[42]   The association of big flares and coronal mass ejections: What is the role of magnetic helicity? [J].
Nindos, A ;
Andrews, MD .
CORONAL AND STELLAR MASS EJECTIONS, 2005, (226) :194-199
[43]   Magnetic reconnection flux and coronal mass ejection velocity [J].
Qiu, J ;
Yurchyshyn, VB .
ASTROPHYSICAL JOURNAL, 2005, 634 (01) :L121-L124
[44]   A three-dimensional flux rope model for coronal mass ejections based on a loss of equilibrium [J].
Roussev, II ;
Forbes, TG ;
Gombosi, TI ;
Sokolov, IV ;
DeZeeuw, DL ;
Birn, J .
ASTROPHYSICAL JOURNAL, 2003, 588 (01) :L45-L48
[45]   The role of streamers in the deflection of coronal mass ejections [J].
Zuccarello, F. P. ;
Bemporad, A. ;
Jacobs, C. ;
Mierla, M. ;
Poedts, S. ;
Zuccarello, F. .
COMPARATIVE MAGNETIC MINIMA: CHARACTERIZING QUIET TIMES IN THE SUN AND STARS, 2012, (286) :134-+
[46]   The chromospheric component of coronal bright points: Coronal and chromospheric responses to magnetic-flux emergence [J].
Madjarska, Maria S. ;
Chae, Jongchul ;
Moreno-Insertis, Fernando ;
Hou, Zhenyong ;
Nobrega-Siverio, Daniel ;
Kwak, Hannah ;
Galsgaard, Klaus ;
Cho, Kyuhyoun .
ASTRONOMY & ASTROPHYSICS, 2021, 646
[47]   Modeling the propagation of coronal mass ejections with COCONUT: Implementation of the regularized Biot-Savart law flux rope model [J].
Guo, J. H. ;
Linan, L. ;
Poedts, S. ;
Guo, Y. ;
Lani, A. ;
Schmieder, B. ;
Brchnelova, M. ;
Perri, B. ;
Baratashvili, T. ;
Ni, Y. W. ;
Chen, P. F. .
ASTRONOMY & ASTROPHYSICS, 2024, 683
[48]   ROTATION OF CORONAL MASS EJECTIONS DURING ERUPTION [J].
Lynch, B. J. ;
Antiochos, S. K. ;
Li, Y. ;
Luhmann, J. G. ;
DeVore, C. R. .
ASTROPHYSICAL JOURNAL, 2009, 697 (02) :1918-1927
[49]   MAGNETOHYDRODYNAMIC SIMULATIONS OF INTERPLANETARY CORONAL MASS EJECTIONS [J].
Lionello, Roberto ;
Downs, Cooper ;
Linker, Jon A. ;
Toeroek, Tibor ;
Riley, Pete ;
Mikic, Zoran .
ASTROPHYSICAL JOURNAL, 2013, 777 (01)
[50]   Catastrophic and noncatastrophic mechanisms for coronal mass ejections [J].
Lin, J ;
van Ballegooijen, AA .
ASTROPHYSICAL JOURNAL, 2002, 576 (01) :485-492