On sutured Khovanov homology and axis-preserving mutations

被引:4
作者
Hubbard, Diana [1 ]
机构
[1] Univ Michigan, Dept Math, 530 Church St, Ann Arbor, MI 48109 USA
关键词
Braids; sutured annular Khovanov homology; mutation; Burau representation; BRAID-GROUPS; REPRESENTATIONS;
D O I
10.1142/S0218216517500171
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper establishes that sutured annular Khovanov homology is not invariant for braid closures under axis-preserving mutations. This follows from an explicit relationship between sutured annular Khovanov homology and the classical Burau representation for braid closures.
引用
收藏
页数:15
相关论文
共 18 条
  • [1] Asaeda M. M., 2004, Algebr. Geom. Topol, V4, P1177, DOI [10.2140/agt.2004.4.1177, DOI 10.2140/AGT.2004.4.1177]
  • [2] CATEGORIFIED INVARIANTS AND THE BRAID GROUP
    Baldwin, John A.
    Grigsby, J. Elisenda
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (07) : 2801 - 2814
  • [3] Birman J., 2008, Commun. Contemp. Math., V10, P1033
  • [4] Birman JS, 2005, HANDBOOK OF KNOT THEORY, P19, DOI 10.1016/B978-044451452-3/50003-4
  • [5] STUDYING LINKS VIA CLOSED BRAIDS .5. THE UNLINK
    BIRMAN, JS
    MENASCO, WW
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 329 (02) : 585 - 606
  • [6] Bloom J., MATH RES LETT, V17, P1
  • [7] Sutured Khovanov homology distinguishes braids from other tangles
    Grigsby, J. Elisenda
    Ni, Yi
    [J]. MATHEMATICAL RESEARCH LETTERS, 2014, 21 (06) : 1263 - 1275
  • [8] Grigsby JE, 2011, CONTEMP MATH, V560, P111
  • [9] Jackson C. H., 2001, THESIS
  • [10] The Lawrence-Krammer-Bigelow representations of the braid groups via Uq(sl2)
    Jackson, Craig
    Kerler, Thomas
    [J]. ADVANCES IN MATHEMATICS, 2011, 228 (03) : 1689 - 1717