Recurrence in non-autonomous dynamical systems

被引:0
|
作者
Cavro, Jakub [1 ]
机构
[1] Silesian Univ Opava, Math Inst Opava, Rybnicku 1, Opava 74601, Czech Republic
关键词
Non-autonomous dynamical system; recurrent points; non-wandering points; Secondary; 39A;
D O I
10.1080/10236198.2019.1651849
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a sequence of continuous maps on a compact metric space X uniformly converging to a function f. This sequence forms a non-autonomous discrete dynamical system. In such case, the set of omega-limit points is invariant with respect to the limit function f. Here we give negative answer to questions whether the sets of recurrent points and non-wandering points are also invariant. We also discuss the relation of the set of recurrent points of and its limit function f.
引用
收藏
页码:1404 / 1411
页数:8
相关论文
共 50 条
  • [21] Non-autonomous difference equations and discrete dynamical systems
    Kloeden, Peter E.
    Poetzsche, C.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (02) : 129 - 130
  • [22] Ground state solutions for non-autonomous dynamical systems
    Schechter, Martin
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (10)
  • [23] Weak stability of non-autonomous discrete dynamical systems
    Lan, Yaoyao
    Peris, Alfred
    TOPOLOGY AND ITS APPLICATIONS, 2018, 250 : 53 - 60
  • [24] Morse Decomposition of Attractors for Non-autonomous Dynamical Systems
    Caraballo, Tomas
    Jara, Juan C.
    Langa, Jose A.
    Liu, Zhenxin
    ADVANCED NONLINEAR STUDIES, 2013, 13 (02) : 309 - 329
  • [25] Controlling coexisting attractors of a class of non-autonomous dynamical systems
    Zhang, Zhi
    Paez Chavez, Joseph
    Sieber, Jan
    Liu, Yang
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 431
  • [26] The Baire Class of Topological Entropy of Non-Autonomous Dynamical Systems
    Astrelina, A. A.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2018, 73 (05) : 203 - 206
  • [27] ON ω-LIMIT SETS AND ATTRACTION OF NON-AUTONOMOUS DISCRETE DYNAMICAL SYSTEMS
    Liu, Lei
    Chen, Bin
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (04) : 703 - 713
  • [28] Markus-Yamabe conjecture for non-autonomous dynamical systems
    Cheban, David
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 : 202 - 218
  • [29] Some criteria of chaos in non-autonomous discrete dynamical systems
    Shao, Hua
    Chen, Guanrong
    Shi, Yuming
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2020, 26 (03) : 295 - 308
  • [30] REGULARITY AND IRREGULARITY OF FIBER DIMENSIONS OF NON-AUTONOMOUS DYNAMICAL SYSTEMS
    Mayer, Volker
    Skorulski, Bartlomiej
    Urbanski, Mariusz
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2013, 38 (02) : 489 - 514