Symbolic computation and q-deformed function solutions of (2+1)-dimensional breaking soliton equation

被引:0
作者
Cao Li-Na [1 ]
Wang Deng-Shan
Chen Lan-Xin
机构
[1] Cent Univ Natl, Sch Math & Comp Sci, Beijing 100081, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Math Mechanizat Key Lab, Beijing 100080, Peoples R China
[3] Shijiazhuang Univ, Dept Math, Shijiazhuang 050035, Peoples R China
关键词
q-deformed hyperbolic functions; symbolic computation; Riccati equation; soliton-like solution;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, by using symbolic and algebra computation, Chen and Wang's multiple Riccati equations rational expansion method was further extended. Many double soliton-like and other novel combined forms of exact solutions of the (2+1)-dimensional Breaking soliton equation are derived by using the extended multiple Riccati equations expansion method.
引用
收藏
页码:270 / 274
页数:5
相关论文
共 29 条
  • [1] Ablowitz M. J., 1981, SOLITON INVERSE SCAT
  • [2] [Anonymous], GTM
  • [3] Exact solutions of multi-component nonlinear Schrodinger and Klein-Gordon equations in two-dimensional space-time
    Arai, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (20): : 4281 - 4288
  • [4] Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs
    Baldwin, D
    Göktas, Ü
    Hereman, W
    Hong, L
    Martino, RS
    Miller, JC
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2004, 37 (06) : 669 - 705
  • [5] Bogoyavlenskii O I., 1990, Mathematics of the USSR-Izvestiya, V34, P245, DOI [10.1070/IM1990v034n02ABEH000628, DOI 10.1070/IM1990V034N02ABEH000628]
  • [6] Bogoyavlensky O. I., 1990, IZV AKAD NAUK SSSR M, V54, P123
  • [7] Chen Y, 2006, COMMUN THEOR PHYS, V45, P224
  • [8] Multiple Riccati equations rational expansion method and complexiton solutions of the Whitham-Broer-Kaup equation
    Chen, Y
    Wang, Q
    [J]. PHYSICS LETTERS A, 2005, 347 (4-6) : 215 - 227
  • [9] Chen Y, 2003, COMMUN THEOR PHYS, V40, P137
  • [10] GARDNER CS, 1967, PHYS REV LETT, V19, P1905