real analytic;
manifold of mappings;
infinite-dimensional Lie group;
regular Lie group;
diffeomorphism group;
Silva space;
TOPOLOGICAL VECTOR-SPACES;
MAPPINGS;
D O I:
10.4064/sm8130-12-2015
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We construct an in finite-dimensional real analytic manifold structure on the space of real analytic mappings from a compact manifold to a locally convex manifold. Here a map is de fined to be real analytic if it extends to a holomorphic map on some neighbourhood of the complexification of its domain. As is well known, the construction turns the group of real analytic diffeomorphisms into a smooth locally convex Lie group. We prove that this group is regular in the sense of Milnor. In the inequivalent "convenient setting of calculus" the real analytic diffeomorphisms even form a real analytic Lie group. However, we prove that the Lie group structure on the group of real analytic diffeomorphisms is in general not real analytic in our sense.
机构:
Univ London London Sch Econ & Polit Sci, Dept Math, London WC2A 2AE, EnglandUniv London London Sch Econ & Polit Sci, Dept Math, London WC2A 2AE, England
机构:
Univ Santiago de Compostela, Fac Matemat, Dpto Xeometria & Topoloxia, Santiago De Compostela 15782, SpainUniv Lyon 1, Inst Camille Jordan, F-69622 Villeurbanne, France
Macias-Virgos, Enrique
Sotelo-Armesto, Antonio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago de Compostela, Fac Matemat, Dpto Xeometria & Topoloxia, Santiago De Compostela 15782, SpainUniv Lyon 1, Inst Camille Jordan, F-69622 Villeurbanne, France
机构:
Univ London London Sch Econ & Polit Sci, Dept Math, London WC2A 2AE, EnglandUniv London London Sch Econ & Polit Sci, Dept Math, London WC2A 2AE, England
机构:
Univ Santiago de Compostela, Fac Matemat, Dpto Xeometria & Topoloxia, Santiago De Compostela 15782, SpainUniv Lyon 1, Inst Camille Jordan, F-69622 Villeurbanne, France
Macias-Virgos, Enrique
Sotelo-Armesto, Antonio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago de Compostela, Fac Matemat, Dpto Xeometria & Topoloxia, Santiago De Compostela 15782, SpainUniv Lyon 1, Inst Camille Jordan, F-69622 Villeurbanne, France