The Lie group of real analytic diffeomorphisms is not real analytic

被引:4
作者
Dahmen, Rafael [1 ]
Schmeding, Alexander [2 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, Petersenstr 30, D-64289 Darmstadt, Germany
[2] NTNU Trondheim, Inst Matemat Fag, N-7032 Trondheim, Norway
关键词
real analytic; manifold of mappings; infinite-dimensional Lie group; regular Lie group; diffeomorphism group; Silva space; TOPOLOGICAL VECTOR-SPACES; MAPPINGS;
D O I
10.4064/sm8130-12-2015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct an in finite-dimensional real analytic manifold structure on the space of real analytic mappings from a compact manifold to a locally convex manifold. Here a map is de fined to be real analytic if it extends to a holomorphic map on some neighbourhood of the complexification of its domain. As is well known, the construction turns the group of real analytic diffeomorphisms into a smooth locally convex Lie group. We prove that this group is regular in the sense of Milnor. In the inequivalent "convenient setting of calculus" the real analytic diffeomorphisms even form a real analytic Lie group. However, we prove that the Lie group structure on the group of real analytic diffeomorphisms is in general not real analytic in our sense.
引用
收藏
页码:141 / 172
页数:32
相关论文
共 50 条
  • [21] SMOOTH PERFECTNESS FOR THE GROUP OF DIFFEOMORPHISMS
    Haller, Stefan
    Rybicki, Tomasz
    Teichmann, Josef
    JOURNAL OF GEOMETRIC MECHANICS, 2013, 5 (03) : 281 - 294
  • [22] Analytic Baire spaces
    Ostaszewski, A. J.
    FUNDAMENTA MATHEMATICAE, 2012, 217 (03) : 189 - 210
  • [23] The Lie group of bisections of a Lie groupoid
    Schmeding, Alexander
    Wockel, Christoph
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2015, 48 (01) : 87 - 123
  • [24] The Lie group of bisections of a Lie groupoid
    Alexander Schmeding
    Christoph Wockel
    Annals of Global Analysis and Geometry, 2015, 48 : 87 - 123
  • [25] Diff(Rn) as a Milnor-Lie group
    Glöckner, H
    MATHEMATISCHE NACHRICHTEN, 2005, 278 (09) : 1025 - 1032
  • [26] The Lie Group Structure of the Butcher Group
    Geir Bogfjellmo
    Alexander Schmeding
    Foundations of Computational Mathematics, 2017, 17 : 127 - 159
  • [27] The Lie Group Structure of the Butcher Group
    Bogfjellmo, Geir
    Schmeding, Alexander
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2017, 17 (01) : 127 - 159
  • [28] THE DIFFEOMORPHISM GROUP OF A LIE FOLIATION
    Hector, Gilbert
    Macias-Virgos, Enrique
    Sotelo-Armesto, Antonio
    ANNALES DE L INSTITUT FOURIER, 2011, 61 (01) : 365 - 378
  • [29] Radius of analyticity of analytic functions on Banach spaces
    Boyd, Christopher
    Ryan, Raymond A.
    Snigireva, Nina
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 463 (01) : 40 - 49
  • [30] Stable geometric properties of analytic and harmonic functions
    Hernandez, Rodrigo
    Martin, Maria J.
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2013, 155 (02) : 343 - 359