Multisite Autism Spectrum Disorder Classification Using Convolutional Neural Network Classifier and Individual Morphological Brain Networks

被引:42
作者
Gao, Jingjing [1 ]
Chen, Mingren [2 ]
Li, Yuanyuan [3 ]
Gao, Yachun [4 ]
Li, Yanling [5 ]
Cai, Shimin [2 ]
Wang, Jiaojian [3 ,6 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Life Sci & Technol, Key Lab NeuroInformat Minist Educ, Chengdu, Peoples R China
[4] Univ Elect Sci & Technol China, Sch Phys, Chengdu, Peoples R China
[5] Xihua Univ, Sch Elect Engn & Elect Informat, Chengdu, Peoples R China
[6] Shenzhen Inst Neurosci, Ctr Language & Brain, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
autism spectrum disorder; individual morphological covariance brain network; convolutional neural network; gradient-weighted class activation mapping; structural MRI; IMAGE FUSION; DEEP; CONNECTIVITY; CEREBELLUM;
D O I
10.3389/fnins.2020.629630
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Autism spectrum disorder (ASD) is a range of neurodevelopmental disorders with behavioral and cognitive impairment and brings huge burdens to the patients' families and the society. To accurately identify patients with ASD from typical controls is important for early detection and early intervention. However, almost all the current existing classification methods for ASD based on structural MRI (sMRI) mainly utilize the independent local morphological features and do not consider the covariance patterns of these features between regions. In this study, by combining the convolutional neural network (CNN) and individual structural covariance network, we proposed a new framework to classify ASD patients with sMRI data from the ABIDE consortium. Moreover, gradient-weighted class activation mapping (Grad-CAM) was applied to characterize the weight of features contributing to the classification. The experimental results showed that our proposed method outperforms the currently used methods for classifying ASD patients with the ABIDE data and achieves a high classification accuracy of 71.8% across different sites. Furthermore, the discriminative features were found to be mainly located in the prefrontal cortex and cerebellum, which may be the early biomarkers for the diagnosis of ASD. Our study demonstrated that CNN is an effective tool to build the framework for the diagnosis of ASD with individual structural covariance brain network.
引用
收藏
页数:10
相关论文
共 39 条
[1]  
[Anonymous], 2012, ABS12070580 CORR
[2]   The Cerebellum and Cognitive Function: 25 Years of Insight from Anatomy and Neuroimaging [J].
Buckner, Randy L. .
NEURON, 2013, 80 (03) :807-815
[3]   Brain Graphs: Graphical Models of the Human Brain Connectome [J].
Bullmore, Edward T. ;
Bassett, Danielle S. .
ANNUAL REVIEW OF CLINICAL PSYCHOLOGY, 2011, 7 :113-140
[4]   Power failure: why small sample size undermines the reliability of neuroscience [J].
Button, Katherine S. ;
Ioannidis, John P. A. ;
Mokrysz, Claire ;
Nosek, Brian A. ;
Flint, Jonathan ;
Robinson, Emma S. J. ;
Munafo, Marcus R. .
NATURE REVIEWS NEUROSCIENCE, 2013, 14 (05) :365-376
[5]   Structural MRI in Autism Spectrum Disorder [J].
Chen, Rong ;
Jiao, Yun ;
Herskovits, Edward H. .
PEDIATRIC RESEARCH, 2011, 69 (05) :63R-68R
[6]  
Chen T.Q., 2016, KDD16 P 22 ACM, DOI DOI 10.1145/2939672.2939785
[7]   The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism [J].
Di Martino, A. ;
Yan, C-G ;
Li, Q. ;
Denio, E. ;
Castellanos, F. X. ;
Alaerts, K. ;
Anderson, J. S. ;
Assaf, M. ;
Bookheimer, S. Y. ;
Dapretto, M. ;
Deen, B. ;
Delmonte, S. ;
Dinstein, I. ;
Ertl-Wagner, B. ;
Fair, D. A. ;
Gallagher, L. ;
Kennedy, D. P. ;
Keown, C. L. ;
Keysers, C. ;
Lainhart, J. E. ;
Lord, C. ;
Luna, B. ;
Menon, V. ;
Minshew, N. J. ;
Monk, C. S. ;
Mueller, S. ;
Mueller, R. A. ;
Nebel, M. B. ;
Nigg, J. T. ;
O'Hearn, K. ;
Pelphrey, K. A. ;
Peltier, S. J. ;
Rudie, J. D. ;
Sunaert, S. ;
Thioux, M. ;
Tyszka, J. M. ;
Uddin, L. Q. ;
Verhoeven, J. S. ;
Wenderoth, N. ;
Wiggins, J. L. ;
Mostofsky, S. H. ;
Milham, M. P. .
MOLECULAR PSYCHIATRY, 2014, 19 (06) :659-667
[9]   Anatomical Abnormalities in Autism? [J].
Haar, Shlomi ;
Berman, Sigal ;
Behrmann, Marlene ;
Dinstein, Ilan .
CEREBRAL CORTEX, 2016, 26 (04) :1440-1452
[10]  
He Kaiming, 2015, C COMP VIS PATT REC