DYNAMICS IN A ROSENZWEIG-MACARTHUR PREDATOR-PREY SYSTEM WITH QUIESCENCE

被引:3
|
作者
Wang, Jinfeng [1 ]
Fan, Hongxia [2 ]
机构
[1] Harbin Normal Univ, Sch Math Sci, Harbin 150025, Heilongjiang, Peoples R China
[2] Harbin Normal Univ, Dept Basic Sci, Harbin 150001, Heilongjiang, Peoples R China
来源
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Predator-prey; quiescence; four coupled; stability; Hopf bifurcation; MODELS; STABILITY; PHASES;
D O I
10.3934/dcdsb.2016.21.909
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A system of four coupled ordinary differential equations is considered, which are coupled through migration of both prey and predator model with logistic type growth. Combined effect of quiescence provides a more realistic way of modeling the complex dynamical behavior. The global stability and Hopf bifurcation solutions are investigated.
引用
收藏
页码:909 / 918
页数:10
相关论文
共 50 条
  • [41] Effects of a disease affecting a predator on the dynamics of a predator-prey system
    Auger, Pierre
    Mchich, Rachid
    Chowdhury, Tanmay
    Sallet, Gauthier
    Tchuente, Maurice
    Chattopadhyay, Joydev
    JOURNAL OF THEORETICAL BIOLOGY, 2009, 258 (03) : 344 - 351
  • [42] Predator-prey dynamics with disease in the prey
    Braza, PA
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2005, 2 (04) : 703 - 717
  • [43] Dynamics of a predator-prey system with inducible defense and disease in the prey
    Liu, Xinxin
    Liu, Siyu
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 71
  • [44] Chaotic dynamics of a discrete predator-prey system with prey refuge
    Jana, Debaldev
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 224 : 848 - 865
  • [45] Dynamics of a Predator-Prey System with Wind Effect and Prey Refuge
    Takyi, Eric M.
    Cooper, Kasey
    Dreher, Ava
    McCrorey, Caroline
    JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2023, 12 (03) : 427 - 440
  • [46] Dynamics of a predator-prey system with nonlinear prey-taxis
    Liu, Changfeng
    Guo, Shangjiang
    NONLINEARITY, 2022, 35 (08) : 4283 - 4316
  • [47] Regime shift in Rosenzweig–Macarthur predator–prey model in presence of strong Allee effect in prey
    Biswambhar Rakshit
    Thirumalai Vaasan Raghunathan
    Nonlinear Dynamics, 2024, 112 : 7715 - 7725
  • [48] Population games with instantaneous behavior and the Rosenzweig-MacArthur model
    Frolich, Emil F.
    Thygesen, Uffe H.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2022, 85 (05)
  • [49] DYNAMICS OF A PREDATOR-PREY MODEL
    Volokitin, E. P.
    Treskov, S. A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2010, 7 : 87 - 99
  • [50] Dynamics of a predator-prey model
    Sáez, ES
    González-Olivares, E
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1999, 59 (05) : 1867 - 1878