DYNAMICS IN A ROSENZWEIG-MACARTHUR PREDATOR-PREY SYSTEM WITH QUIESCENCE

被引:3
|
作者
Wang, Jinfeng [1 ]
Fan, Hongxia [2 ]
机构
[1] Harbin Normal Univ, Sch Math Sci, Harbin 150025, Heilongjiang, Peoples R China
[2] Harbin Normal Univ, Dept Basic Sci, Harbin 150001, Heilongjiang, Peoples R China
来源
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Predator-prey; quiescence; four coupled; stability; Hopf bifurcation; MODELS; STABILITY; PHASES;
D O I
10.3934/dcdsb.2016.21.909
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A system of four coupled ordinary differential equations is considered, which are coupled through migration of both prey and predator model with logistic type growth. Combined effect of quiescence provides a more realistic way of modeling the complex dynamical behavior. The global stability and Hopf bifurcation solutions are investigated.
引用
收藏
页码:909 / 918
页数:10
相关论文
共 50 条
  • [21] Global dynamics of the Rosenzweig-MacArthur model with variable search rate
    Qian, Qiguo
    Jiang, Weihua
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2025,
  • [22] Global Harvesting and Stocking Dynamics in a Modified Rosenzweig-MacArthur Model
    Yang, Yue
    Xu, Yancong
    Meng, Fanwei
    Rong, Libin
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (05)
  • [23] Dynamics of a predator-prey system with prey refuge
    Lajmiri, Zeynab
    Orak, Iman
    Hosseini, Samane
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2019, 7 (03): : 454 - 474
  • [24] Dynamical analysis of prey refuge in a predator-prey system with Rosenzweig functional response
    Ma, Zhihui
    Wang, Shufan
    Wang, Wenting
    ADVANCED MATERIALS AND INFORMATION TECHNOLOGY PROCESSING, PTS 1-3, 2011, 271-273 : 577 - 580
  • [25] BIFURCATION AND OVEREXPLOITATION IN ROSENZWEIG-MACARTHUR MODEL
    Lin, Xiaoqing
    Xu, Yancong
    Gao, Daozhou
    Fan, Guihong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (01): : 690 - 706
  • [26] The Rosenzweig-MacArthur system via reduction of an individual based model
    Kruff, Niclas
    Lax, Christian
    Liebscher, Volkmar
    Walcher, Sebastian
    JOURNAL OF MATHEMATICAL BIOLOGY, 2019, 78 (1-2) : 413 - 439
  • [27] BIFURCATIONS AND HYDRA EFFECTS IN ROSENZWEIG-MACARTHUR MODEL
    Lin, Xiaoqing
    Yang, Yue
    Xu, Yancong
    He, Mu
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (02): : 606 - 622
  • [28] Stability of fronts in the diffusive Rosenzweig-MacArthur model
    Ghazaryan, Anna
    Lafortune, Stephane
    Latushkin, Yuri
    Manukian, Vahagn
    STUDIES IN APPLIED MATHEMATICS, 2024, 153 (04)
  • [29] Dynamics of a predator-prey system with pulses
    Li, Yongfeng
    Cui, Jingan
    Song, Xinyu
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 204 (01) : 269 - 280
  • [30] Dynamics of a Discrete Predator-Prey System
    Fang, Qibin
    Li, Xiaoping
    Cao, Meiyu
    INTERNATIONAL CONFERENCE ON MODELLING OPTIMIZATION AND COMPUTING, 2012, 38 : 1793 - 1800