DYNAMICS IN A ROSENZWEIG-MACARTHUR PREDATOR-PREY SYSTEM WITH QUIESCENCE

被引:3
|
作者
Wang, Jinfeng [1 ]
Fan, Hongxia [2 ]
机构
[1] Harbin Normal Univ, Sch Math Sci, Harbin 150025, Heilongjiang, Peoples R China
[2] Harbin Normal Univ, Dept Basic Sci, Harbin 150001, Heilongjiang, Peoples R China
来源
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Predator-prey; quiescence; four coupled; stability; Hopf bifurcation; MODELS; STABILITY; PHASES;
D O I
10.3934/dcdsb.2016.21.909
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A system of four coupled ordinary differential equations is considered, which are coupled through migration of both prey and predator model with logistic type growth. Combined effect of quiescence provides a more realistic way of modeling the complex dynamical behavior. The global stability and Hopf bifurcation solutions are investigated.
引用
收藏
页码:909 / 918
页数:10
相关论文
共 50 条
  • [1] Dynamics of a discrete Rosenzweig-MacArthur predator-prey model with piecewise-constant arguments
    Wang, Cheng
    Sun, Bin
    Zhao, Qianqian
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2024,
  • [2] Double Allee effects on prey in a modified Rosenzweig-MacArthur predator-prey model
    González-Olivares, Eduardo
    Huincahue-Arcos, Jaime
    Lecture Notes in Electrical Engineering, 2014, 307 : 105 - 120
  • [3] Dynamics of the discrete-time Rosenzweig-MacArthur predator-prey system in the closed positively invariant set
    Beso, E.
    Kalabusic, S.
    Pilav, E.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (08):
  • [4] The Rosenzweig-MacArthur Graphical Criterion for a Predator-Prey Model with Variable Mortality Rate
    Hammoum, Amina
    Sari, Tewfik
    Yadi, Karim
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (01)
  • [5] Regime shift in Rosenzweig-Macarthur predator-prey model in presence of strong Allee effect in prey
    Rakshit, Biswambhar
    Raghunathan, Thirumalai Vaasan
    NONLINEAR DYNAMICS, 2024, 112 (09) : 7715 - 7725
  • [6] A Study of the Jacobi Stability of the Rosenzweig-MacArthur Predator-Prey System through the KCC Geometric Theory
    Munteanu, Florian
    SYMMETRY-BASEL, 2022, 14 (09):
  • [7] Large speed traveling waves for the Rosenzweig-MacArthur predator-prey model with spatial diffusion
    Ducrot, Arnaud
    Liu, Zhihua
    Magal, Pierre
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 415
  • [8] Hopf bifurcation and stability analysis of the Rosenzweig-MacArthur predator-prey model with stage-structure in prey
    Beay, Lazarus Kalvein
    Suryanto, Agus
    Darti, Isnani
    Trisilowati
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (04) : 4080 - 4097
  • [9] Hopf bifurcation and stability analysis of the Rosenzweig-MacArthur predator-prey model with stage-structure in prey
    Beay L.K.
    Suryanto A.
    Darti I.
    Trisilowati
    Suryanto, Agus (suryanto@ub.ac.id), 1600, American Institute of Mathematical Sciences (17): : 4080 - 4097
  • [10] Evolutionarily stable strategies in stable and periodically fluctuating populations: The Rosenzweig-MacArthur predator-prey model
    Grunert, Katrin
    Holden, Helge
    Jakobsen, Espen R.
    Stenseth, Nils Chr
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (04)