Insight into the mechanism of CO2 and CO methanation over Cu(100) and Co-modified Cu(100) surfaces: A DFT study

被引:36
|
作者
Qiu, Mei [1 ]
Tao, Huilin [2 ]
Li, Yi [2 ]
Zhang, Yangfan [2 ]
机构
[1] Jiangxi Agr Univ, Coll Sci, Dept Chem, Nanchang 330045, Jiangxi, Peoples R China
[2] Fuzhou Univ, Coll Chem, Fuzhou 350116, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Density functional theory; Bimetallic alloys; CO2; reduction; Methane synthesis; INITIO MOLECULAR-DYNAMICS; CARBON-DIOXIDE CONVERSION; FINDING SADDLE-POINTS; METHANOL SYNTHESIS; ELECTROCHEMICAL REDUCTION; CATALYTIC CONVERSION; HYDROGENATION; HYDROCARBONS; TRANSITION; COPPER;
D O I
10.1016/j.apsusc.2019.07.199
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Density functional theory calculations were carried out to investigate the mechanism of CO2 and CO methanation over pure Cu(100) and Co-Cu bimetallic catalysts. The most favorable pathways for the CO2 and CO hydrogenation were obtained. For the Cu(100) surface, the barriers of the rate-limiting step for the HCOO* and CO* hydrogenation were 122.52 kJ/mol and 106.14 kJ/mol. Because the barrier (77.34 kJ/mol) for the H2CO* hydrogenation is more than the desorption energy of 54.80 kJ/mol, H2CO gas was the main product from the hydrogenation of CO2 and CO on a pure Cu(100) surface. For the Co-4/Cu(100) surface, the optimal pathways for the CO2 and CO methanation were the same as those on the Cu(100) surface. The rate-limiting step for CO2 and CO methanation is the H2COO* (barrier of 103.57 kJ/mol) and H2CO* hydrogenation (barrier of 107.80 kJ/mol). Compared to the mechanism of CO2 and CO over Cu(100), the Co dopant can modify the rate-limiting step and decrease the activation barrier. Particularly, the barrier for the H2COH decomposition was changed from 100.96 kJ/mol to 69.81 kJ/mol (CO2 pathway) and 61.26 kJ/mol (CO pathway). Furthermore, the co-adsorbed OH* group affects the hydrogenation pathway of some intermediates rather than electronic structures.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] CO Adsorption on c(2 x 2)-Li/Cu(100): interaction between CO and Li on unreconstructed Cu (100) surfaces
    Tero, R
    Sasaki, T
    Iwasawa, Y
    SURFACE SCIENCE, 2000, 448 (2-3) : 250 - 260
  • [22] Adsorption of CO on Cu (110) and (100) surfaces using COSMO-based DFT
    Zuo, Zhijun
    Huang, Wei
    Han, Peide
    Li, Zhihong
    JOURNAL OF MOLECULAR MODELING, 2009, 15 (09) : 1079 - 1083
  • [23] Density Functional Theory Calculations on Electrocatalytic CO2 Hydrogenation to C2-Based Products over Cu(100) Nanocubes
    Mandal, Shyama Charan
    Pathak, Biswarup
    ACS APPLIED NANO MATERIALS, 2021, 4 (11) : 11907 - 11919
  • [24] Theoretical Investigations of the Activation of CO2 on the Transition Metal-doped Cu(100) and Cu(111) Surfaces
    Qiu Mei
    Liu Yu
    Wu Juan
    Li Yi
    Huang Xin
    Chen Wen-Kai
    Zhang Yong-Fan
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2016, 35 (05) : 669 - 678
  • [25] Theoretical investigation of electrochemical reduction mechanism of CO2 on the Cu(111), Sn@Cu(111) and Sn(211) surfaces
    Li, Shuai
    Sun, Shujuan
    Suo, Wei
    Liu, Guihua
    Wang, Guirong
    Wang, Yanji
    Li, Jingde
    Zhang, Zisheng
    APPLIED SURFACE SCIENCE, 2021, 564 (564)
  • [26] Theoretical study of CO2 hydrogenation on Cu surfaces
    Rong Wang
    Beien Zhu
    Guiling Zhang
    Yi Gao
    Journal of Molecular Modeling, 2020, 26
  • [27] Methanol synthesis revisited: reaction mechanisms in CO/CO2 hydrogenation over Cu/ZnO and DFT analysis
    Gogate, Makarand R.
    PETROLEUM SCIENCE AND TECHNOLOGY, 2019, 37 (05) : 603 - 610
  • [28] Identification of Cu(100)/Cu(111) Interfaces as Superior Active Sites for CO Dimerization During CO2 Electroreduction
    Wu, Zhi-Zheng
    Zhang, Xiao-Long
    Niu, Zhuang-Zhuang
    Gao, Fei-Yue
    Yang, Peng-Peng
    Chi, Li-Ping
    Shi, Lei
    Wei, Wen-Sen
    Liu, Ren
    Chen, Zhi
    Hu, Shaojin
    Zheng, Xiao
    Gao, Min-Rui
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (01) : 259 - 269
  • [29] Insight into CO2 methanation mechanism over NiUSY zeolites: An operando IR study
    Westermann, A.
    Azambre, B.
    Bacariza, M. C.
    Graca, I.
    Ribeiro, M. F.
    Lopes, J. M.
    Henriques, C.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 174 : 120 - 125
  • [30] Theoretical Considerations on the Electroreduction of CO to C2 Species on Cu(100) Electrodes
    Calle-Vallejo, Federico
    Koper, Marc T. M.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (28) : 7282 - 7285