Counting colored random triangulations

被引:13
作者
Bouttier, J [1 ]
Di Francesco, P [1 ]
Guitter, E [1 ]
机构
[1] CEA Saclay, Serv Phys Theor, CEA, DSM,SPhT,URA,CNRS, F-91191 Gif Sur Yvette, France
关键词
D O I
10.1016/S0550-3213(02)00582-5
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We revisit the problem of enumeration of vertex-tricolored planar random triangulations solved in [Nucl. Phys. B 516 [FS] (1998) 543-587] in the light of recent combinatorial developments relating classical planar graph counting problems to the enumeration of decorated trees. We give a direct combinatorial derivation of the associated counting function, involving tricolored trees. This is generalized to arbitrary k-gonal tessellations with cyclic colorings and checked by use of matrix models. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:519 / 532
页数:14
相关论文
共 9 条
[1]   Enumeration of planar constellations [J].
Bousquet-Mélou, M ;
Schaeffer, G .
ADVANCES IN APPLIED MATHEMATICS, 2000, 24 (04) :337-368
[2]   PLANAR DIAGRAMS [J].
BREZIN, E ;
ITZYKSON, C ;
PARISI, G ;
ZUBER, JB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 59 (01) :35-51
[3]   Coloring random triangulations [J].
Di Francesco, P ;
Eynard, B ;
Guitter, E .
NUCLEAR PHYSICS B, 1998, 516 (03) :543-587
[4]  
DIFRANCESCO P, 1995, PHYS REP, V254, P1, DOI 10.1016/0370-1573(94)00084-G
[5]  
EYNARD B, 2000, SACALY LECT NOTES
[6]  
KONTSEVITCH M, 1997, MATH INTELL, V19, P48
[7]  
Schaeffer G., 1997, ELECTRON J COMB, V4, pR20
[8]  
SCHAEFFER G, 1998, THESIS U BORDEAUX 2
[9]   A CENSUS OF PLANAR MAPS [J].
TUTTE, WT .
CANADIAN JOURNAL OF MATHEMATICS, 1963, 15 (02) :249-&