On 'anti'-eigenvalues for elliptic systems and a question of McKenna and Walter

被引:17
作者
Kawohl, B
Sweers, G
机构
[1] Univ Cologne, Inst Math, D-50923 Cologne, Germany
[2] Delft Univ Technol, NL-2600 GA Delft, Netherlands
关键词
elliptic systems; positivity of solutions; conditioned Brownian motion; plate equation; beam equation; maximum principle;
D O I
10.1512/iumj.2002.51.2275
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate for which range of b the biharmonic boundary value problem Delta(2)u + bu = f in Omega, with Deltau = u = 0 on partial derivativeOmega, is positivity-preserving in the sense that f greater than or equal to 0 in Omega implies u greater than or equal to 0. We will also disprove a conjecture of McKenna and Walter on the isoperimetric nature of the upper bound b(c) (Omega) for such b. The investigation gives rise to related questions for certain linear elliptic systems and to curious identities for sums of inverse eigenvalues.
引用
收藏
页码:1023 / 1040
页数:18
相关论文
共 23 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS F
[2]  
CARISTI G, 1990, DELFT PROGR REPORT, V14, P33
[3]   LIFETIME OF CONDITIONED BROWNIAN-MOTION IN LIPSCHITZ-DOMAINS [J].
CRANSTON, M .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 70 (03) :335-340
[4]   POTENTIAL-THEORY FOR THE SCHRODINGER-EQUATION [J].
CRANSTON, M ;
FABES, E ;
ZHAO, Z .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 15 (02) :213-216
[5]   THE LIFETIME OF CONDITIONED BROWNIAN-MOTION [J].
CRANSTON, M ;
MCCONNELL, TR .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 65 (01) :1-11
[6]  
DOOB JL, 1984, SPRINGER GRUNDLEHREN, V262
[7]  
GILBARG D, 1983, SPRINGER GRUNDLEHREN, V224
[8]  
GRIFFIN PS, 1993, ANN I H POINCARE-PR, V29, P229
[9]   Sharp estimates for iterated Green functions [J].
Grunau, HC ;
Sweers, G .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2002, 132 :91-120
[10]   Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions [J].
Grunau, HC ;
Sweers, G .
MATHEMATISCHE ANNALEN, 1997, 307 (04) :589-626