Asymptotic behaviour of solutions of free boundary problems for Fisher-KPP equation

被引:8
作者
Cai, Jingjing [1 ]
Gu, Hong [2 ]
机构
[1] Shanghai Univ Elect Power, Sch Math & Phys, Shanghai, Peoples R China
[2] Nanjing Univ Finance & Econ, Sch Appl Math, Nanjing, Jiangsu, Peoples R China
基金
上海市自然科学基金;
关键词
Fisher-KPP equation; free boundary problem; zero number principle; compactly supported travelling wave; NONLINEAR DIFFUSION-PROBLEMS; STEFAN PROBLEM; MATHEMATICAL-MODEL; SPREADING SPEED; PROTOCELL;
D O I
10.1017/S0956792516000371
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a free boundary problem for the Fisher-KPP equation: u(t) = u(xx) + f(u) (g(t) < x < h(t)) with free boundary conditions h' (t) = -u(x)(t, h(t)) - alpha and g' (t) = -u(x)(t, g(t)) + beta for 0 < beta < alpha. This problem can model the spreading of a biological or chemical species, where free boundaries represent the spreading fronts of the species. We investigate the asymptotic behaviour of bounded solutions. There are two parameters alpha(0) and alpha* with 0 < alpha(0) < alpha* which play key roles in the dynamics. More precisely, (i) in case 0 < beta < alpha(0) and 0 < alpha < alpha*, we obtain a trichotomy result: (i-1) spreading, i.e., h(t) - g(t) -> + infinity and u(t, . + ct) -> 1 with c epsilon (c(L), c(R)), where c(L) and c(R) are the asymptotic spreading speed of g(t) and h(t), respectively, (c(R) > 0 > c(L) when 0 < beta < alpha < alpha(0); c(R) = 0 > c(L) when 0 < beta < alpha = alpha(0); 0 > c(R) > c(L) when alpha(0) < alpha < alpha* and 0 < beta < alpha(0)); (i-2) vanishing, i.e., lim(t -> T) h(t) = lim(t -> T) g(t) and lim(t -> T) u(t, x) = 0, where T is some positive constant; (i-3) transition, i.e., g(t) -> -infinity, h(t) -> -infinity, 0 < lim(t -> 8)[h(t) - g(t)] < + infinity and u(t, x). V*(x - c* t) with c* < 0, where V*(x - c* t) is a travelling wave with compact support and which satisfies the free boundary conditions. (ii) in case beta >= alpha(0) or alpha >= alpha*, vanishing happens for any solution.
引用
收藏
页码:435 / 469
页数:35
相关论文
共 21 条
[1]  
Aronson D. G., 1975, Lecture Notes in Math., V446, P5, DOI [10.1007/BFb0070595, DOI 10.1007/BFB0070595]
[2]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[3]   Asymptotic Behavior of Solutions of a Reaction Diffusion Equation with Free Boundary Conditions [J].
Cai, Jingjing ;
Lou, Bendong ;
Zhou, Maolin .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2014, 26 (04) :1007-1028
[4]   Asymptotic behavior of solutions of Fisher-KPP equation with free boundary conditions [J].
Cai, Jingjing .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 16 :170-177
[5]   Analysis of a mathematical model of protocell [J].
Cui, SB ;
Friedman, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 236 (01) :171-206
[6]   Spreading and vanishing in nonlinear diffusion problems with free boundaries [J].
Du, Yihong ;
Lou, Bendong .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (10) :2673-2724
[7]   NONLINEAR DIFFUSION PROBLEMS WITH FREE BOUNDARIES: CONVERGENCE, TRANSITION SPEED, AND ZERO NUMBER ARGUMENTS [J].
Du, Yihong ;
Lou, Bendong ;
Zhou, Maolin .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (05) :3555-3584
[8]   Spreading speed and profile for nonlinear Stefan problems in high space dimensions [J].
Du, Yihong ;
Matsuzawa, Hiroshi ;
Zhou, Maolin .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (03) :741-787
[9]   Regularity and Asymptotic Behavior of Nonlinear Stefan Problems [J].
Du, Yihong ;
Matano, Hiroshi ;
Wang, Kelei .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 212 (03) :957-1010
[10]   SHARP ESTIMATE OF THE SPREADING SPEED DETERMINED BY NONLINEAR FREE BOUNDARY PROBLEMS [J].
Du, Yihong ;
Matsuzawa, Hiroshi ;
Zhou, Maolin .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (01) :375-396