On the inversion of the convolution and Laplace transform

被引:8
作者
Baeumer, B [1 ]
机构
[1] Univ Otago, Dept Math & Stat, Dunedin, New Zealand
关键词
operational calculus; generalized functions; integral transforms;
D O I
10.1090/S0002-9947-02-03174-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new inversion formula for the classical, finite, and asymptotic Laplace transform (f) over cap of continuous or generalized functions f. The inversion is given as a limit of a sequence of finite linear combinations of exponential functions whose construction requires only the values of (f) over cap evaluated on a Muntz set of real numbers. The inversion sequence converges in the strongest possible sense. The limit is uniform if f is continuous, it is in (1) if f is an element of L-1, and converges in an appropriate norm or Frechet topology for generalized functions f. As a corollary we obtain a new constructive inversion procedure for the convolution transform K : f bar right arrow k star f; i. e., for given g and k we construct a sequence of continuous functions f(n) such that k star f(n) --> g.
引用
收藏
页码:1201 / 1212
页数:12
相关论文
共 10 条
[1]  
[Anonymous], OPERATIONAL CALCULUS
[2]  
BAEUMER B, 1997, THESIS LOUISIANA STA
[3]  
Bäumer B, 1999, CH CRC RES NOTES, V399, P68
[4]  
BAUMER B, 1994, C SEM MAT U BAR, V259, P27
[5]  
Doetsch G, 1950, HDB LAPLACE TRANSFOR, VI
[6]  
FOIAS C, 1961, STUD MATH, V21, P73
[7]  
LUMER G, 1999, MATH TOP, V16
[8]  
SKORNIK K, 1986, COMPL AN APPL 85 VAR, P604
[9]  
Titchmarsh EC, 1926, P LOND MATH SOC, V25, P283
[10]  
VIGNAUX JC, 1939, ATTI ACCAD NAZ LINCE, V29, P345