ELECTRO-MAGNETO-STATIC STUDY OF THE NONLINEAR SCHRODINGER EQUATION COUPLED WITH BOPP-PODOLSKY ELECTRODYNAMICS IN THE PROCA SETTING

被引:12
作者
Hebey, Emmanuel [1 ]
机构
[1] Univ Cergy Pontoise, Dept Math, Site St Martin, 2 Ave Adolphe Chauvin, F-95302 Cergy Pontoise, France
关键词
Schrodinger equation; Bopp-Podolski electrodynamics; Proca setting; stability theory; fourth order systems of equations; BLOW-UP PHENOMENA; YAMABE EQUATION; SOBOLEV SPACES; SYSTEMS; THEOREM; PROOF; MASS;
D O I
10.3934/dcds.2019291
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the system consisting of the the nonlinear Schrodinger equation coupled with Bopp-Podolsky electrodynamics in the Proca setting in the context of closed 3-dimensional manifolds. We prove existence of solutions up to the gauge, and compactness of the system both in the subcritical and in the critical case.
引用
收藏
页码:6683 / 6712
页数:30
相关论文
共 52 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
[Anonymous], SUPPL J DIFF GEOM
[3]  
[Anonymous], CALC VAR PARTIAL DIF
[4]  
[Anonymous], PITMAN MONOGR SURVEY
[5]  
[Anonymous], LECT NOTES COURSES S
[6]  
[Anonymous], LECT NOTES MATH
[7]  
AUBIN T, 1976, B SCI MATH, V100, P149
[8]   Spinning Q-Balls for the Klein-Gordon-Maxwell Equations [J].
Benci, Vieri ;
Fortunato, Donato .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 295 (03) :639-668
[9]  
Bopp F, 1940, ANN PHYS-BERLIN, V38, P345
[10]  
Brendle S., 2011, ADV LECT MATH ALM, V20, P29