Improvement of PV performance by using multi-stacked high density InAs quantum dot molecules

被引:0
|
作者
Ruangdet, S. [1 ]
Thainoi, S. [1 ]
Kanjanachuchai, S. [1 ]
Panyakeow, S. [1 ]
机构
[1] Chulalongkorn Univ, Fac Engn, Dept Elect Engn, Bangkok 10330, Thailand
关键词
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
InAs quantum dot molecules (QDMs) are prepared by thin-capping-and-regrowth MBE process. The dot density can be varied between 10(10) cm(-2), for asgrown quantum dots (QDs), to 10(12) cm(-2), for multi-stack QDMs. Photocurrent measurements on 1- and 5-stack high-density QDM layers show that these InAs QDMs when embedded inside a GaAs bulk structure extend photon absorption beyond the 850-nm bandedge limited by GaAs. The results also indicate that the higher the number of stacks the higher the resulting current. The presence of high-density QDMs in solar cells thus extends the absorption region and at the same time increase the output current. Electrical characterisations on homojunction (p-n) solar cells with 1- and 5-stack high-density QDMs embedded between the junction show that the 5-stack sample provides a higher short-circuit current density of J(sc) = 14.4 mA/cm(2) compared to 9.6 mA/cm(2) provided by the 1-stack sample. The increase is due entirely to the difference in absorptive dot volume accounted for by the difference in the number of stacks of high-density InAs QDMs. The efficiency of homostructure 5-stack high-density QDM solar cell is 5.1 %.
引用
收藏
页码:225 / 228
页数:4
相关论文
共 50 条
  • [41] Growth and characterization of multi-stacked InAs/GaAs quantum dots emitting near 1.3 μm on misoriented Si (001) substrates by MOCVD
    Liu, Hao
    Wang, Qi
    Chen, Jia
    Liu, Kai
    Ren, Xiaomin
    Journal of Crystal Growth, 2016, 455 : 168 - 171
  • [42] Improvement of performance of InAs quantum dot solar cell by inserting thin AlAs layers
    Hu, Dongzhi
    McPheeters, Claiborne C. O.
    Yu, Edward T.
    Schaadt, Daniel M.
    NANOSCALE RESEARCH LETTERS, 2011, 6 : 1 - 5
  • [43] High-performance InAs/GaAs quantum dot laser with dot layers grown at 425℃
    岳丽
    龚谦
    曹春芳
    严进一
    汪洋
    成若海
    李世国
    ChineseOpticsLetters, 2013, 11 (06) : 43 - 46
  • [44] High Characteristic Temperature for Ridge-waveguide Laser with a Highly Stacked InAs Quantum Dot Structure
    Akahane, Kouichi
    Matsumoto, Atsushi
    Umezawa, Toshimasa
    Yamamoto, Naokatsu
    Kawanishi, Tetsuya
    2016 INTERNATIONAL SEMICONDUCTOR LASER CONFERENCE (ISLC), 2016,
  • [45] High performance 1.5 μm metamorphic InAs quantum dot lasers on GaAs
    Mi, Z.
    Yang, J.
    Bliattacharya, P.
    2006 IEEE LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2006, : 868 - +
  • [46] High performance InAs quantum dot infrared photodetectors (QDIP) on InP by MOCVD
    Zhang, W
    Lim, HC
    Taguchi, M
    Tsao, S
    Szafraniec, J
    Movaghar, B
    Razeghi, M
    Quantum Sensing and Nanophotonic Devices II, 2005, 5732 : 326 - 333
  • [47] 1.2-um InAs/GaAs high-density quantum dot laser
    Shao, Fu-Hui
    Zhang, Yi
    Su, Xiang-Bin
    Ni, Hai-Qiao
    Zhang, Yu
    Xu, Ying-Qiang
    Niu, Zhi-Chuan
    14TH NATIONAL CONFERENCE ON LASER TECHNOLOGY AND OPTOELECTRONICS (LTO 2019), 2019, 11170
  • [48] Growth of multi-stacked InAs/GaNAs quantum dots grown with As2 source in atomic hydrogen-assisted molecular beam epitaxy
    Takata, Ayami
    Oshima, Ryuji
    Shoji, Yasushi
    Akahane, Kouichi
    Okada, Yoshitaka
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2010, 42 (10): : 2745 - 2748
  • [49] High-performance InAs/GaAs quantum dot laser with dot layers grown at 425 °C
    Yue, Li
    Gong, Qian
    Cao, Chunfang
    Yan, Jinyi
    Wang, Yang
    Cheng, Ruohai
    Li, Shiguo
    CHINESE OPTICS LETTERS, 2013, 11 (06)
  • [50] Performance Improvement of Multi-Stacked CMOS mm-Wave Power Amplifiers Based on Negative Capacitance Phase Compensation
    Montaseri, Mohammad Hassan
    Rahkonen, Timo
    Aikio, Janne
    Parssinen, Aarno
    INTERNATIONAL WORKSHOP ON INTEGRATED NONLINEAR MICROWAVE AND MILLIMETRE-WAVE CIRCUITS (INMMIC), 2018,