Diagonal catalysts in quantum adiabatic optimization

被引:6
作者
Albash, Tameem [1 ,2 ,3 ]
Kowalsky, Matthew [4 ,5 ]
机构
[1] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
[2] Univ New Mexico, Dept Phys & Astron, CQuIC, Albuquerque, NM 87131 USA
[3] Univ New Mexico, Ctr Quantum Informat & Control, CQuIC, Albuquerque, NM 87131 USA
[4] Univ Southern Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA
[5] Univ Southern Calif, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
关键词
Hamming distance - Catalysts;
D O I
10.1103/PhysRevA.103.022608
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a protocol for quantum adiabatic optimization whereby an intermediary Hamiltonian that is diagonal in the computational basis is turned on and off during the interpolation. This "diagonal catalyst" serves to bias the energy landscape towards a given spin configuration, and we show how this can remove the first-order phase transition present in the standard protocol for the ferromagnetic p spin and the weak-strong cluster problems. The success of the protocol also makes clear how it can fail: biasing the energy landscape towards a state only helps in finding the ground state if the Hamming distance from the ground state and the energy of the biased state are correlated. We present examples where biasing towards low-energy states that are nonetheless very far in Hamming distance from the ground state can severely worsen the efficiency of the algorithm compared to the standard protocol. Our results for the diagonal catalyst protocol are analogous to results exhibited by adiabatic reverse annealing, so our conclusions should apply to that protocol as well.
引用
收藏
页数:10
相关论文
共 33 条
[1]   Role of nonstoquastic catalysts in quantum adiabatic optimization [J].
Albash, Tameem .
PHYSICAL REVIEW A, 2019, 99 (04)
[2]   Adiabatic quantum computation [J].
Albash, Tameem ;
Lidar, Daniel A. .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[3]   First-order quantum phase transition in adiabatic quantum computation [J].
Amin, M. H. S. ;
Choi, V. .
PHYSICAL REVIEW A, 2009, 80 (06)
[4]  
[Anonymous], 1914, VERH D PHYS GES
[5]   A scalable readout system for a superconducting adiabatic quantum optimization system [J].
Berkley, A. J. ;
Johnson, M. W. ;
Bunyk, P. ;
Harris, R. ;
Johansson, J. ;
Lanting, T. ;
Ladizinsky, E. ;
Tolkacheva, E. ;
Amin, M. H. S. ;
Rose, G. .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2010, 23 (10)
[6]   Computational multiqubit tunnelling in programmable quantum annealers [J].
Boixo, Sergio ;
Smelyanskiy, Vadim N. ;
Shabani, Alireza ;
Isakov, Sergei V. ;
Dykman, Mark ;
Denchev, Vasil S. ;
Amin, Mohammad H. ;
Smirnov, Anatoly Yu. ;
Mohseni, Masoud ;
Neven, Hartmut .
NATURE COMMUNICATIONS, 2016, 7
[7]   Proof of Adiabatic law [J].
Born, M. ;
Fock, V. .
ZEITSCHRIFT FUR PHYSIK, 1928, 51 (3-4) :165-180
[8]   Polynomial time algorithms for estimating spectra of adiabatic Hamiltonians [J].
Bringewatt, Jacob ;
Dorland, William ;
Jordan, Stephen P. .
PHYSICAL REVIEW A, 2019, 100 (03)
[9]   Quantum annealing of a disordered magnet [J].
Brooke, J ;
Bitko, D ;
Rosenbaum, TF ;
Aeppli, G .
SCIENCE, 1999, 284 (5415) :779-781
[10]   Architectural Considerations in the Design of a Superconducting Quantum Annealing Processor [J].
Bunyk, Paul I. ;
Hoskinson, Emile M. ;
Johnson, Mark W. ;
Tolkacheva, Elena ;
Altomare, Fabio ;
Berkley, Andrew J. ;
Harris, Richard ;
Hilton, Jeremy P. ;
Lanting, Trevor ;
Przybysz, Anthony J. ;
Whittaker, Jed .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2014, 24 (04)