Culture and differentiation of rabbit intestinal organoids and organoid-derived cell monolayers

被引:20
|
作者
Kardia, Egi [1 ]
Frese, Michael [1 ,2 ]
Smertina, Elena [1 ,2 ]
Strive, Tanja [1 ,2 ,3 ]
Zeng, Xi-Lei [4 ]
Estes, Mary [4 ,5 ]
Hall, Robyn N. [1 ,3 ]
机构
[1] Commonwealth Sci & Ind Res Org, Hlth & Biosecur, Canberra, ACT 2601, Australia
[2] Univ Canberra, Fac Sci & Technol, Canberra, ACT 2617, Australia
[3] Ctr Invas Species Solut, Canberra, ACT 2617, Australia
[4] Baylor Coll Med, Dept Mol Virol & Microbiol, Houston, TX 77030 USA
[5] Baylor Coll Med, Dept Med, Houston, TX 77030 USA
关键词
STEM-CELLS; IN-VITRO; WNT; REPLICATION; EXPRESSION; INHIBITOR; ENTEROIDS; MECHANISM; EXPANSION; SURVIVAL;
D O I
10.1038/s41598-021-84774-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Organoids emulate many aspects of their parental tissue and are therefore used to study pathogen-host interactions and other complex biological processes. Here, we report a robust protocol for the isolation, maintenance and differentiation of rabbit small intestinal organoids and organoid-derived cell monolayers. Our rabbit intestinal spheroid and monolayer cultures grew most efficiently in L-WRN-conditioned medium that contained Wnt, R-spondin and Noggin, and that had been supplemented with ROCK and TGF-beta inhibitors. Organoid and monolayer differentiation was initiated by reducing the concentration of the L-WRN-conditioned medium and by adding ROCK and Notch signalling inhibitors. Immunofluorescence staining and RT-qPCR demonstrated that our organoids contained enterocytes, enteroendocrine cells, goblet cells and Paneth cells. Finally, we infected rabbit organoids with Rabbit calicivirus Australia-1, an enterotropic lagovirus that-like many other caliciviruses-does not grow in conventional cell culture. Despite testing various conditions for inoculation, we did not detect any evidence of virus replication, suggesting either that our organoids do not contain suitable host cell types or that additional co-factors are required for a productive infection of rabbit organoids with Rabbit calicivirus Australia-1.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Enhanced small intestinal organoid-derived epithelial cell adhesion and growth in organ-on-a-chip devices
    Quacquarelli, Federica
    Davila, Sergio
    Taelman, Jasin
    Guiu, Jordi
    Antfolk, Maria
    RSC ADVANCES, 2025, 15 (05) : 3693 - 3703
  • [12] Dissection of Barrier Dysfunction in Organoid-Derived Human Intestinal Epithelia Induced by Giardia duodenalis
    Holthaus, David
    Kraft, Martin R.
    Krug, Susanne M.
    Wolf, Silver
    Mueller, Antonia
    Betancourt, Estefania Delgado
    Schorr, Madeleine
    Holland, Gudrun
    Knauf, Felix
    Schulzke, Joerg-Dieter
    Aebischer, Toni
    Klotz, Christian
    GASTROENTEROLOGY, 2022, 162 (03) : 844 - 858
  • [13] Organoid-derived intestinal epithelial cells are a suitable model for preclinical toxicology and pharmacokinetic studies
    Takahashi, Yu
    Noguchi, Makoto
    Inoue, Yu
    Sato, Shintaro
    Shimizu, Makoto
    Kojima, Hirotatsu
    Okabe, Takayoshi
    Kiyono, Hiroshi
    Yamauchi, Yoshio
    Sato, Ryuichiro
    ISCIENCE, 2022, 25 (07)
  • [14] Impact of Micro- and Nano-Plastics on Human Intestinal Organoid-Derived Epithelium
    Wang, Brooke
    Iglesias-Ledon, Lilianne
    Bishop, Matthew
    Chadha, Anushka
    Rudolph, Sara E.
    Longo, Brooke N.
    Cairns, Dana M.
    Chen, Ying
    Kaplan, David L.
    CURRENT PROTOCOLS, 2024, 4 (04):
  • [15] Assessment of P-glycoprotein function using canine intestinal organoid-derived epithelial interfaces
    Nagao, Itsuma
    Nakazawa, Meg
    Tachibana, Yurika
    Kawasaki, Minae
    M. Ambrosini, Yoko
    XENOBIOTICA, 2024, 54 (06) : 342 - 349
  • [16] Chemically-defined and scalable culture system for intestinal stem cells derived from human intestinal organoids
    Kwon, Ohman
    Lee, Hana
    Jung, Jaeeun
    Son, Ye Seul
    Jeon, Sojeong
    Yoo, Won Dong
    Son, Naeun
    Jung, Kwang Bo
    Choi, Eunho
    Lee, In-Chul
    Kwon, Hyung-Jun
    Kim, Chuna
    Lee, Mi-Ok
    Cho, Hyun-Soo
    Kim, Dae Soo
    Son, Mi-Young
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [17] Harnessing single-cell genomics to improve the physiological fidelity of organoid-derived cell types
    Mead, Benjamin E.
    Ordovas-Montanes, Jose
    Braun, Alexandra P.
    Levy, Lauren E.
    Bhargava, Prerna
    Szucs, Matthew J.
    Ammendolia, Dustin A.
    MacMullan, Melanie A.
    Yin, Xiaolei
    Hughes, Travis K.
    Wadsworth, Marc H., II
    Ahmad, Rushdy
    Rakoff-Nahoum, Seth
    Carr, Steven A.
    Langer, Robert
    Collins, James J.
    Shalek, Alex K.
    Karp, Jeffrey M.
    BMC BIOLOGY, 2018, 16
  • [18] Single-cell transcriptomics of human organoid-derived enteroendocrine cell populations from the small intestine
    Smith, Christopher A.
    Lu, Van B.
    Bakar, Rula Bany
    Miedzybrodzka, Emily
    Davison, Adam
    Goldspink, Deborah
    Reimann, Frank
    Gribble, Fiona M.
    JOURNAL OF PHYSIOLOGY-LONDON, 2024,
  • [19] Bacteriophage Therapy Testing Against Shigella flexneri in a Novel Human Intestinal Organoid-Derived Infection Model
    Llanos-Che, Alejandro
    Citorik, Robert J.
    Nickerson, Kourtney P.
    Ingano, Laura
    Serena, Gloria
    Senger, Stefania
    Lu, Timothy K.
    Fasano, Alessi
    Faherty, Christina S.
    JOURNAL OF PEDIATRIC GASTROENTEROLOGY AND NUTRITION, 2019, 68 (04) : 509 - 516
  • [20] Designer matrices for intestinal stem cell and organoid culture
    Glorevski, Nikolce
    Sachs, Norman
    Manfrin, Andrea
    Giger, Sonja
    Bragina, Maiia E.
    Ordonez-Moran, Paloma
    Clevers, Hans
    Lutolf, Matthias P.
    NATURE, 2016, 539 (7630) : 560 - +