Synchronization of improved chaotic Colpitts oscillators using nonlinear feedback control

被引:26
作者
Effa, J. Y. [1 ]
Essimbi, B. Z. [1 ]
Ngundam, J. Mucho [2 ]
机构
[1] Univ Yaounde I, Dept Phys, Fac Sci, Yaounde, Cameroon
[2] Univ Yaounde I, Dept Genies Elect & Telecommun, ENSP, Yaounde, Cameroon
关键词
Improved chaotic Colpitts oscillator; Nonlinear feedback; Chaos; Synchronization; Microwave; DESIGN;
D O I
10.1007/s11071-008-9459-7
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The model and the normalized state equations of the novel version of the Colpitts oscillator designed to operate in the ultra-high frequency range are presented. The circuit is investigated numerically and simulations demonstrate chaos in the microwave frequency range. Typical phase portrait, Lyapunov exponent and Lyapunov dimension are calculated using a piece-wise linear approximation of nonlinear I-V characteristic of the bipolar junction transistor. In addition, the feedback controller is applied to achieve chaos synchronization for two identical improved chaotic Colpitts oscillators. In the frame the nonlinear function of the system is used as a nonlinear feedback term for the stability of the error dynamics. Finally, numerical simulations show that this control method is feasible for this oscillator.
引用
收藏
页码:39 / 47
页数:9
相关论文
共 34 条
[1]   Coupled chaotic colpitts oscillators: Identical and mismatched cases [J].
Baziliauskas, A. ;
Krivickas, R. ;
Tamasevicius, A. .
NONLINEAR DYNAMICS, 2006, 44 (1-4) :151-158
[2]  
Bumelien S., 2004, P 12 WORKSH NDES 200, P99
[3]   Numerical investigation and experimental demonstration of chaos from two-stage Colpitts oscillator in the ultrahigh frequency range [J].
Bumeliene, S. ;
Tamasevicius, A. ;
Mykolaitis, G. ;
Baziliauskas, A. ;
Lindberg, E. .
NONLINEAR DYNAMICS, 2006, 44 (1-4) :167-172
[4]  
BURYKIN V, 1997, P NDES 97 MOSC RUSS, P548
[5]  
CENYS A, 1998, P INT S NONL THEOR I, P519
[6]   The Colpitts oscillator: Families of periodic solutions and their bifurcations [J].
De Feo, O ;
Maggio, GM ;
Kennedy, MP .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (05) :935-958
[7]   Synchronization of Colpitts oscillators with different orders [J].
Effa, J. Y. ;
Essimbi, B. Z. ;
Ngundam, J. Mucho .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (04) :1590-1597
[8]   Observer-based chaotic synchronization in the presence of unknown inputs [J].
Feki, M ;
Robert, B .
CHAOS SOLITONS & FRACTALS, 2003, 15 (05) :831-840
[9]   Adaptive synchronization of uncertain chaotic colpitts oscillators based on parameter identification [J].
Fotsin, HB ;
Daafouz, J .
PHYSICS LETTERS A, 2005, 339 (3-5) :304-315
[10]   THE LIAPUNOV DIMENSION OF STRANGE ATTRACTORS [J].
FREDERICKSON, P ;
KAPLAN, JL ;
YORKE, ED ;
YORKE, JA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1983, 49 (02) :185-207