Beyond SRP: Quantitative carrier profiling with M4PP

被引:8
作者
Clarysse, T.
Vandervorst, W.
Lin, R.
Petersen, D. H.
Nielsen, P. F.
机构
[1] IMEC, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, Dept Elect Engn, INSYS, B-3001 Louvain, Belgium
[3] CAPRES AS, Scion DTU, DK-2800 Kongens Lyngby, Denmark
关键词
differential sheet resistance; absolute carrier profiling; micro four point probe;
D O I
10.1016/j.nimb.2006.10.049
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Understanding dopant diffusion and activation mechanisms is a key issue for future sub-45-nm CMO, S technologies. This understanding requires the availability of accurate chemical and electrically active dopant profiles. In this work we will focus on the accurate and reliable characterization of carrier depth profiles for ultra-shallow (USJ) structures. Typically conventional means such as spreading resistance probe (SRP), which uses two high-pressure probes (10 GPa) with a contact radius of about 1 mu m and a separation of 30 mu m, are running out of steam in the sub-30-nm depth regime. This is mainly due to the need to apply for multi-layer structures quite large Laplace-based deconvolution correction factors (> 1000) on the raw data causing excessive noise amplification. These correction factors can be circumvented by performing a series of microscopic four-point probe (M4PP) measurements along a beveled sample with a small enough angle (few minutes). In M4PP, the probe tips make an elastic (non-penetrating) contact with a 1.5 mu m pitch leading to an enhanced dynamic range because of the reduced sampling size and penetration. Subsequently, the underlying resistivity and carrier depth profiles can be easily extracted by the simple calculation of the differential sheet resistance for each of the sub-layers. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:136 / 140
页数:5
相关论文
共 12 条
[1]  
*ASTM, 1995, F72388 ASTM
[2]   Characterization of electrically active dopant profiles with the spreading resistance probe [J].
Clarysse, T ;
Vanhaeren, D ;
Hoflijk, I ;
Vandervorst, W .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2004, 47 (5-6) :123-206
[3]   Impact of three-dimensional lateral current flow on ultrashallow spreading resistance profiles [J].
Clarysse, T ;
Caymax, M ;
Vandervorst, W .
APPLIED PHYSICS LETTERS, 2002, 80 (13) :2407-2409
[4]   Towards sub-10 nm carrier profiling with spreading resistance techniques [J].
Clarysse, T ;
Eyben, P ;
Hantschel, T ;
Vandervorst, W .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2001, 4 (1-3) :61-66
[5]  
CLARYSSE T, MRS SPRING M 2006 SA
[6]   Developments in ultrashallow spreading resistance analysis [J].
Dickey, DH .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2002, 20 (01) :467-470
[7]   Assessing the performance of two-dimensional dopant profiling techniques [J].
Duhayon, N ;
Eyber, P ;
Fouchier, M ;
Clarysee, T ;
Vandervorst, W ;
Alvarez, D ;
Schoemann, S ;
Ciappa, M ;
Stangoni, M ;
Fichtner, W ;
Formanek, P ;
Kittler, M ;
Raineri, V ;
Giannazzo, F ;
Goghero, D ;
Rosenwaks, Y ;
Shikler, R ;
Saraf, S ;
Sadewasser, S ;
Barreau, N ;
Glatzel, T ;
Verheijen, M ;
Mentink, SAM ;
von Sprekelsen, M ;
Maltezopoulos, T ;
Wiesendanger, R ;
Hellemans, L .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2004, 22 (01) :385-393
[8]   Progress towards a physical contact model for scanning spreading resistance microscopy [J].
Eyben, P ;
Denis, S ;
Clarysse, T ;
Vandervorst, W .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2003, 102 (1-3) :132-137
[9]   Scanning spreading resistance microscopy and spectroscopy for routine and quantitative two-dimensional carrier profiling [J].
Eyben, P ;
Xu, M ;
Duhayon, N ;
Clarysse, T ;
Callewaert, S ;
Vandervorst, W .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2002, 20 (01) :471-478
[10]   Drift mobility in quantum nanostructures by scanning probe microscopy [J].
Giannazzo, F ;
Raineri, V ;
Mirabella, S ;
Impellizzeri, G ;
Priolo, F .
APPLIED PHYSICS LETTERS, 2006, 88 (04) :1-3