ROBUST MULTI-OBJECT TRACKING USING CONFIDENT DETECTIONS AND SAFE TRACKLETS

被引:0
作者
Taalimi, Ali [1 ]
Qi, Hairong [1 ]
机构
[1] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA
来源
2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2015年
关键词
Multiple target tracking; Data association; Confidence score;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a novel approach to simultaneous tracking of multiple targets in a video. Instead of using the unreliable "detector confidence scores," it develops a new scoring system, ConfRank, that originates from the PageRank idea where not only the detection confidence score, but that the quality and the quantity of adjacent detections in spatio-temporal neighborhood are considered. The new scoring system effectively separates False Positives from True Positives, that enables us to remove unwanted detections using a simple threshold without loosing targets. Our framework outperforms state-of-the-art tracking methods in most evaluations. Specifically, it significantly reduces False Positives and switch identities while keeping missed detections low leading to higher precision and multiple object tracking accuracy (MOTA) on several standard datasets.
引用
收藏
页码:1638 / 1642
页数:5
相关论文
共 50 条
  • [31] Structural Constraint Data Association for Online Multi-object Tracking
    Ju Hong Yoon
    Chang-Ryeol Lee
    Ming-Hsuan Yang
    Kuk-Jin Yoon
    [J]. International Journal of Computer Vision, 2019, 127 : 1 - 21
  • [32] Machine Learning Methods for Data Association in Multi-Object Tracking
    Emami, Patrick
    Pardalos, Panos M.
    Elefteriadou, Lily
    Ranka, Sanjay
    [J]. ACM COMPUTING SURVEYS, 2020, 53 (04)
  • [33] Tracklet Generation Method by Submodular Optimization for Multi-Object Tracking
    Sun J.
    Du G.
    [J]. Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2024, 46 (03): : 995 - 1004
  • [34] An improved deep learning architecture for multi-object tracking systems
    Urdiales, Jesus
    Martin, David
    Maria Armingol, Jose
    [J]. INTEGRATED COMPUTER-AIDED ENGINEERING, 2023, 30 (02) : 121 - 134
  • [35] Multi-object tracking with adaptive measurement noise and information fusion
    Huang, Xi
    Zhan, Yinwei
    [J]. IMAGE AND VISION COMPUTING, 2024, 144
  • [36] Multi-object tracking algorithm based on adaptive mixed filtering
    Liang M.
    Liu G.
    [J]. Guangxue Xuebao/Acta Optica Sinica, 2010, 30 (09): : 2554 - 2561
  • [37] Exploiting Hierarchical Dense Structures on Hypergraphs for Multi-Object Tracking
    Wen, Longyin
    Lei, Zhen
    Lyu, Siwei
    Li, Stan Z.
    Yang, Ming-Hsuan
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (10) : 1983 - 1996
  • [38] MULTI-OBJECT TRACKING USING ONLINE METRIC LEARNING WITH LONG SHORT-TERM MEMORY
    Wan, Xingyu
    Zhao, Qing
    Wang, Jinjun
    Deng, Shunming
    Kong, Zhifeng
    [J]. 2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 788 - 792
  • [39] GMCP-Tracker: Global Multi-object Tracking Using Generalized Minimum Clique Graphs
    Zamir, Amir Roshan
    Dehghan, Afshin
    Shah, Mubarak
    [J]. COMPUTER VISION - ECCV 2012, PT II, 2012, 7573 : 343 - 356
  • [40] Multi-Object Tracking and Segmentation with a Space-Time Memory Network
    Miah, Mehdi
    Bilodeau, Guillaume-Alexandre
    Saunier, Nicolas
    [J]. 2023 20TH CONFERENCE ON ROBOTS AND VISION, CRV, 2023, : 184 - 193