Latent Markov models (LMMs) are widely used in the analysis of heterogeneous longitudinal data. However, most existing LMMs are developed in fully observed data without missing entries. The main objective of this study is to develop a Bayesian approach for analyzing the LMMs with non-ignorable missing data. Bayesian methods for estimation and model comparison are discussed. The empirical performance of the proposed methodology is evaluated through simulation studies. An application to a data set derived from National Longitudinal Survey of Youth 1997 is presented.
机构:
Univ Nevada, Sch Community Hlth Sci, 1664 N Virginia St, Reno, NV 89557 USAUniv Nevada, Sch Community Hlth Sci, 1664 N Virginia St, Reno, NV 89557 USA
机构:
Sun Yat Sen Univ, Dept Stat, Guangzhou, Guangdong, Peoples R ChinaSun Yat Sen Univ, Dept Stat, Guangzhou, Guangdong, Peoples R China
Cai, Jingheng
Ouyang, Ming
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Stat, Hong Kong, Hong Kong, Peoples R ChinaSun Yat Sen Univ, Dept Stat, Guangzhou, Guangdong, Peoples R China
Ouyang, Ming
Kang, Kai
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Stat, Hong Kong, Hong Kong, Peoples R ChinaSun Yat Sen Univ, Dept Stat, Guangzhou, Guangdong, Peoples R China
Kang, Kai
Song, Xinyuan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Stat, Hong Kong, Hong Kong, Peoples R China
Chinese Univ Hong Kong, Shenzhen Res Inst, Hong Kong, Hong Kong, Peoples R ChinaSun Yat Sen Univ, Dept Stat, Guangzhou, Guangdong, Peoples R China
机构:
Univ S Alabama, Dept Math & Stat, 411 Univ Blvd N,ILB 316, Mobile, AL 36688 USAUniv S Alabama, Dept Math & Stat, 411 Univ Blvd N,ILB 316, Mobile, AL 36688 USA
Bindele, Huybrechts F.
Zhao, Yichuan
论文数: 0引用数: 0
h-index: 0
机构:
Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USAUniv S Alabama, Dept Math & Stat, 411 Univ Blvd N,ILB 316, Mobile, AL 36688 USA