Bayesian analysis of latent Markov models with non-ignorable missing data

被引:2
|
作者
Cai, Jingheng [1 ]
Liang, Zhibin [1 ]
Sun, Rongqian [1 ]
Liang, Chenyi [1 ]
Pan, Junhao [2 ]
机构
[1] Sun Yat Sen Univ, Dept Stat, Guangzhou, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Dept Psychol, Guangzhou, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Latent Markov models; non-ignorable missing data; MCMC methods; complete DIC; STRUCTURAL EQUATION MODELS; GROWTH MIXTURE-MODELS; VARIABLE MODELS; DISTRIBUTIONS; INFERENCE; RESPONSES;
D O I
10.1080/02664763.2019.1584162
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Latent Markov models (LMMs) are widely used in the analysis of heterogeneous longitudinal data. However, most existing LMMs are developed in fully observed data without missing entries. The main objective of this study is to develop a Bayesian approach for analyzing the LMMs with non-ignorable missing data. Bayesian methods for estimation and model comparison are discussed. The empirical performance of the proposed methodology is evaluated through simulation studies. An application to a data set derived from National Longitudinal Survey of Youth 1997 is presented.
引用
收藏
页码:2299 / 2313
页数:15
相关论文
共 50 条
  • [21] Generalized signed-rank estimation for regression models with non-ignorable missing responses
    Bindele, Huybrechts F.
    Nguelifack, Brice M.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 139 : 14 - 33
  • [22] Model parameters estimation with non-ignorable missing data using influential exponential tilting resampling approach
    Gohil, Kavita
    Samawi, Hani
    Rochani, Haresh
    Yu, Lili
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (01) : 163 - 174
  • [23] BAGEL: A non-ignorable missing value estimation method for mixed attribute datasets
    Priya, R. Devi
    Kuppuswami, S.
    Sivaraj, R.
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2016, 41 (08): : 825 - 836
  • [24] PARAMETRIC FRACTIONAL IMPUTATION FOR NON-IGNORABLE CATEGORICAL MISSING DATA WITH FOLLOW-UP
    Kim, Ji Young
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2012, 54 (02) : 239 - 250
  • [25] Bayesian Analysis of Semiparametric Hidden Markov Models With Latent Variables
    Song, Xinyuan
    Kang, Kai
    Ouyang, Ming
    Jiang, Xuejun
    Cai, Jingheng
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2018, 25 (01) : 1 - 20
  • [26] Bayesian Inference for Growth Mixture Models with Latent Class Dependent Missing Data
    Lu, Zhenqiu Laura
    Zhang, Zhiyong
    Lubke, Gitta
    MULTIVARIATE BEHAVIORAL RESEARCH, 2011, 46 (04) : 567 - 597
  • [27] Estimating the Complier Average Causal Effect with Non-Ignorable Missing Outcomes Using Likelihood Analysis
    Du, Jierui
    Wen, Gao
    Liang, Xin
    MATHEMATICS, 2024, 12 (09)
  • [28] Rapid earthquake impact prediction using non-ignorable missing data from non-expert observers
    Rahmani-Qeranqayeh, Mahdi
    Bastami, Morteza
    Fallah, Afshin
    Majed, Vahid
    Abbasnejadfard, Morteza
    INTERNATIONAL JOURNAL OF DISASTER RISK REDUCTION, 2024, 115
  • [29] Two-period, two-treatment crossover designs subject to non-ignorable missing data
    Matthews, John N. S.
    Henderson, Robin
    BIOSTATISTICS, 2013, 14 (04) : 626 - 638
  • [30] Non-Parametric Non-Inferiority Assessment in a Three-Arm Trial with Non-Ignorable Missing Data
    Li, Wei
    Zhang, Yunqi
    Tang, Niansheng
    MATHEMATICS, 2023, 11 (01)