On Hyers-Ulam Stability for Fractional Differential Equations Including the New Caputo-Fabrizio Fractional Derivative

被引:16
|
作者
Basci, Yasennn [1 ]
Ogrekci, Suleyman [2 ]
Misir, Adil [3 ]
机构
[1] Abant Izzet Baysal Univ, Dept Math, Fac Arts & Sci, TR-14280 Bolu, Turkey
[2] Amasya Univ, Dept Math, Fac Arts & Sci, TR-05000 Amasya, Turkey
[3] Gazi Univ, Dept Math, Fac Sci, TR-06500 Ankara, Turkey
关键词
Fractional differential equation; the new Caputo-Fabrizio fractional derivative; Hyers-Ulam stability; laplace transform; 1ST-ORDER;
D O I
10.1007/s00009-019-1407-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the stability in the sense of Hyers-Ulam for the following fractional differential equations including the new Caputo-Fabrizio fractional derivative: CFD alpha y CFD alpha yx-lambda y (x) -.y (x) = f (x). Finally, two examples are given to illustrate our results.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Study of fractional integro-differential equations under Caputo-Fabrizio derivative
    Shah, Kamal
    Gul, Rozi
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (13) : 7940 - 7953
  • [22] Hyers-Ulam Stability of Caputo Fractional Stochastic Delay Differential Systems with Poisson Jumps
    Bai, Zhenyu
    Bai, Chuanzhi
    MATHEMATICS, 2024, 12 (06)
  • [23] Hyers-Ulam-Mittag-Leffler stability of fractional differential equations with two caputo derivative using fractional fourier transform
    Ganesh, Anumanthappa
    Deepa, Swaminathan
    Baleanu, Dumitru
    Santra, Shyam Sundar
    Moaaz, Osama
    Govindan, Vediyappan
    Ali, Rifaqat
    AIMS MATHEMATICS, 2022, 7 (02): : 1791 - 1810
  • [24] Study of implicit-impulsive differential equations involving Caputo-Fabrizio fractional derivative
    Sitthiwirattham, Thanin
    Gul, Rozi
    Shah, Kamal
    Mahariq, Ibrahim
    Soontharanon, Jarunee
    Ansari, Khursheed J.
    AIMS MATHEMATICS, 2022, 7 (03): : 4017 - 4037
  • [25] GENERALIZED CAPUTO-FABRIZIO FRACTIONAL DIFFERENTIAL EQUATION
    Onitsuka, Masakazu
    EL-Fassi, Iz-iddine
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (02): : 964 - 975
  • [26] A new numerical fractional differentiation formula to approximate the Caputo-Fabrizio fractional derivative: error analysis and stability
    Herik, Leila Moghadam Dizaj
    JaVidi, Mohammad
    Shafiee, Mahmoud
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2022, 10 (01): : 12 - 27
  • [27] Hyers-Ulam and Hyers-Ulam-Rassias Stability for a Class of Fractional Evolution Differential Equations with Neutral Time Delay
    Alharbi, Kholoud N.
    SYMMETRY-BASEL, 2025, 17 (01):
  • [28] GENERALIZED ULAM-HYERS STABILITY FOR FRACTIONAL DIFFERENTIAL EQUATIONS
    Ibrahim, Rabha W.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (05)
  • [29] Pell polynomial solution of the fractional differential equations in the Caputo-Fabrizio sense
    Yaslan, H. Cerdik
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [30] NUMERICAL SOLUTION OF A FRACTIONAL COUPLED SYSTEM WITH THE CAPUTO-FABRIZIO FRACTIONAL DERIVATIVE
    Mansouri, Ikram
    Bekkouche, Mohammed Moumen
    Ahmed, Abdelaziz Azeb
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2023, 22 (01) : 46 - 56