Structure-based engineering of minimal proline dehydrogenase domains for inhibitor discovery

被引:2
作者
Bogner, Alexandra N. [1 ]
Ji, Juan [1 ]
Tanner, John J. [1 ,2 ]
机构
[1] Univ Missouri, Dept Biochem, Columbia, MO 65211 USA
[2] Univ Missouri, Dept Chem, Columbia, MO 65211 USA
基金
美国国家卫生研究院;
关键词
enzyme inhibition; enzyme kinetics; protein engineering; X-ray crystallography; THERMUS-THERMOPHILUS; ESCHERICHIA-COLI; ACTIVE-SITE; PROTEIN; BINDING; METABOLISM; OXIDASE; EXPRESSION; SAXS; CRYSTALLIZABILITY;
D O I
10.1093/protein/gzac016
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Proline dehydrogenase (PRODH) catalyzes the FAD-dependent oxidation of l-proline to Delta(1)-pyrroline-5-carboxylate and is a target for inhibitor discovery because of its importance in cancer cell metabolism. Because human PRODH is challenging to purify, the PRODH domains of the bacterial bifunctional enzyme proline utilization A (PutA) have been used for inhibitor development. These systems have limitations due to large polypeptide chain length, conformational flexibility and the presence of domains unrelated to PRODH activity. Herein, we report the engineering of minimal PRODH domains for inhibitor discovery. The best designs contain one-third of the 1233-residue PutA from Sinorhizobium meliloti and include a linker that replaces the PutA alpha-domain. The minimal PRODHs exhibit near wild-type enzymatic activity and are susceptible to known inhibitors and inactivators. Crystal structures of minimal PRODHs inhibited by S-(-)-tetrahydro-2-furoic acid and 2-(furan-2-yl)acetic acid were determined at 1.23 and 1.72 angstrom resolution. Minimal PRODHs should be useful in chemical probe discovery.
引用
收藏
页数:15
相关论文
共 67 条
  • [21] Grant TD, 2018, NAT METHODS, V15, P191, DOI [10.1038/NMETH.4581, 10.1038/nmeth.4581]
  • [22] Proline dehydrogenase-entrapped mesoporous magnetic silica nanomaterial for electrochemical biosensing of L-proline in biological fluids
    Hasanzadeh, Mohammad
    Nahar, Arezoo Saadati
    Hassanpour, Soodabeh
    Shadjou, Nasrin
    Molchtarzadeh, Ahad
    Mohammadi, Jalal
    [J]. ENZYME AND MICROBIAL TECHNOLOGY, 2017, 105 : 64 - 76
  • [23] Dimerization of Proline Dehydrogenase from Thermus thermophilus Is Crucial for Its Thermostability
    Huijbers, Mieke M. E.
    Wu, Jenny W.
    Westphal, Adrie H.
    van Berkel, Willem J. H.
    [J]. BIOTECHNOLOGY JOURNAL, 2019, 14 (05)
  • [24] Functional Impact of the N-terminal Arm of Proline Dehydrogenase from Thermus thermophilus
    Huijbers, Mieke M. E.
    van Alen, Ilona
    Wu, Jenny W.
    Barendregt, Arjan
    Heck, Albert J. R.
    van Berkel, Willem J. H.
    [J]. MOLECULES, 2018, 23 (01):
  • [25] Proline dehydrogenase from Thermus thermophilus does not discriminate between FAD and FMN as cofactor
    Huijbers, Mieke M. E.
    Martinez-Julvez, Marta
    Westphal, Adrie H.
    Delgado-Arciniega, Estela
    Medina, Milagros
    van Berkel, Willem J. H.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [26] High yields of active Thermus thermophilus proline dehydrogenase are obtained using maltose-binding protein as a solubility tag
    Huijbers, Mieke M. E.
    van Berkel, Willem J. H.
    [J]. BIOTECHNOLOGY JOURNAL, 2015, 10 (03) : 395 - 403
  • [27] Comprehensive macromolecular conformations mapped by quantitative SAXS analyses
    Hura, Greg L.
    Budworth, Helen
    Dyer, Kevin N.
    Rambo, Robert P.
    Hammel, Michal
    McMurray, Cynthia T.
    Tainer, John A.
    [J]. NATURE METHODS, 2013, 10 (06) : 453 - 454
  • [28] XDS
    Kabsch, Wolfgang
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2010, 66 : 125 - 132
  • [29] SASBDB: Towards automatically curated and validated repository for biological scattering data
    Kikhney, Alexey G.
    Borges, Clemente R.
    Molodenskiy, Dmitry S.
    Jeffries, Cy M.
    Svergun, Dmitri I.
    [J]. PROTEIN SCIENCE, 2020, 29 (01) : 66 - 75
  • [30] KITZ R, 1962, J BIOL CHEM, V237, P3245