Numerical homogenization method for parabolic advection-diffusion multiscale problems with large compressible flows

被引:2
作者
Abdulle, A. [1 ]
Huber, M. E. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, ANMC, Math Sect, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
DISCONTINUOUS GALERKIN METHODS; FINITE-ELEMENT-METHOD; RAPIDLY OSCILLATING COEFFICIENTS; LARGE EXPECTED DRIFT; ELLIPTIC PROBLEMS; CONVECTION; EQUATION; INTEGRATION; DGFEM;
D O I
10.1007/s00211-016-0854-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a numerical homogenization method based on a discontinuous Galerkin finite element heterogeneous multiscale method to efficiently approximate the effective solution of parabolic advection-diffusion problems with rapidly varying coefficients, large P,clet number and compressible flows. To estimate the missing data of an effective model, numerical upscaling is performed which accurately captures the effects of microscopic solenoidal or gradient flow at a macroscopic scale such as enhancement or depletion of the effective diffusion. For compressible flow with periodic data, we derive sharp a priori error estimates for the macro and micro discretization errors which are robust in the advection dominated regime. Numerical tests confirm the error estimates for problems with periodic data and illustrate the applicability of our method for problems with non-periodic data.
引用
收藏
页码:603 / 649
页数:47
相关论文
共 57 条
[1]   Discontinuous Galerkin finite element heterogeneous multiscale method for advection-diffusion problems with multiple scales [J].
Abdulle, A. ;
Huber, M. E. .
NUMERISCHE MATHEMATIK, 2014, 126 (04) :589-633
[2]   Second order Chebyshev methods based on orthogonal polynomials [J].
Abdulle, A ;
Medovikov, AA .
NUMERISCHE MATHEMATIK, 2001, 90 (01) :1-18
[3]  
Abdulle A., 2005, DISCRETE CONTIN DY S, V2005, P11
[4]  
Abdulle A., 2016, M2AN MATH MODEL NUME, V50, P1659
[5]  
Abdulle A., 2009, MULTIPLE SCALES PROB, V31, P133
[6]  
Abdulle A., 2004, LECT NOTES COMPUT SC, V39, P23
[7]  
Abdulle A, 2014, MATH COMPUT, V83, P513
[8]   PIROCK: A swiss-knife partitioned implicit-explicit orthogonal Runge-Kutta Chebyshev integrator for stiff diffusion-advection-reaction problems with or without noise [J].
Abdulle, Assyr ;
Vilmart, Gilles .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 242 :869-888
[9]  
Agmon S., 1965, Lectures on Elliptic Boundary Value Problems. Van Nostrand Mathematical Studies
[10]   Multiscale finite element method for numerical homogenization [J].
Allaire, G ;
Brizzi, R .
MULTISCALE MODELING & SIMULATION, 2005, 4 (03) :790-812