Multifractal behavior of linear polymers in disordered media

被引:34
作者
Ordemann, A
Porto, M
Roman, HE
Havlin, S
Bunde, A
机构
[1] Univ Giessen, Inst Theoret Phys 3, D-35392 Giessen, Germany
[2] Bar Ilan Univ, Minerva Ctr, IL-52900 Ramat Gan, Israel
[3] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
[4] Tel Aviv Univ, Sch Chem, IL-69978 Tel Aviv, Israel
[5] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 06期
关键词
D O I
10.1103/PhysRevE.61.6858
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The structural properties of self-avoiding walks (SAWs) on the backbone of the incipient percolation cluster in both d=2 and d=3 were studied by using exact enumeration techniques. It was found that SAWs display multifractal behavior. In general, the results resolve previous inconsistencies regarding the suggested relation μ = p μ.
引用
收藏
页码:6858 / 6865
页数:8
相关论文
共 39 条
  • [1] CRITICALLY BRANCHED CHAINS AND PERCOLATION CLUSTERS
    ALEXANDROWICZ, Z
    [J]. PHYSICS LETTERS A, 1980, 80 (04) : 284 - 286
  • [2] ANDREWS AT, 1986, ELECTROPHORESIS CLIN
  • [3] STATISTICS OF SELF-AVOIDING WALKS ON RANDOM LATTICES
    BARAT, K
    CHAKRABARTI, BK
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1995, 258 (06): : 377 - 411
  • [4] BAUMGARTNER A, 1995, THESIS GESAMTHOCHSCH
  • [5] LOCALIZATION IN DISORDERED STRUCTURES - BREAKDOWN OF THE SELF-AVERAGING HYPOTHESIS
    BUNDE, A
    DRAGER, J
    [J]. PHYSICAL REVIEW E, 1995, 52 (01): : 53 - 56
  • [6] Bunde A., 1996, FRACTALS DISORDERED, DOI DOI 10.1007/978-3-642-84868-1
  • [7] Square lattice self-avoiding walks and corrections to scaling
    Conway, AR
    Guttmann, AJ
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (26) : 5284 - 5287
  • [8] De Cloizeaux J., 1990, POLYM SOLUTION THEIR
  • [9] de Gennes P.G., 1979, SCALING CONCEPTS POL
  • [10] LANGRANGIAN THEORY FOR A SELF-AVOIDING RANDOM CHAIN
    CLOIZEAU JD
    [J]. PHYSICAL REVIEW A, 1974, 10 (05) : 1665 - 1669