High-fidelity light-shift gate for clock-state qubits

被引:22
作者
Baldwin, C. H. [1 ]
Bjork, B. J. [1 ]
Foss-Feig, M. [1 ]
Gaebler, J. P. [1 ]
Hayes, D. [1 ]
Kokish, M. G. [1 ]
Langer, C. [1 ]
Sedlacek, J. A. [1 ]
Stack, D. [1 ]
Vittorini, G. [1 ]
机构
[1] Honeywell Quantum Solut, 303 S Technol Ct, Broomfield, CO 80021 USA
关键词
D O I
10.1103/PhysRevA.103.012603
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
To date, the highest-fidelity quantum logic gates between two qubits have been achieved using the geometric-phase gate in trapped ions, with the two leading variants being the Molmer-Sorensen gate and the light-shift (LS) gate. Both of these approaches have their respective advantages and challenges. For example, the latter is technically simpler and is natively insensitive to optical phases, but it has not been made to work directly on a clock-state qubit. We present a technique for implementing the LS gate that combines the best features of these two approaches: By using a small (similar to MHz) detuning from a narrow (dipole-forbidden) optical transition, we are able to operate an LS gate directly on hyperfine clock states, achieving gate fidelities of 99.74(4)% using modest laser power at visible wavelengths. Current gate infidelities appear to be dominated by technical noise, and theoretical modeling suggests a path toward gate fidelity above 99.99%.
引用
收藏
页数:7
相关论文
共 16 条
[1]   High-fidelity ion-trap quantum computing with hyperfine clock states [J].
Aolita, L. ;
Kim, K. ;
Benhelm, J. ;
Roos, C. F. ;
Haeffner, H. .
PHYSICAL REVIEW A, 2007, 76 (04)
[2]   Subspace benchmarking high-fidelity entangling operations with trapped ions [J].
Baldwin, C. H. ;
Bjork, B. J. ;
Gaebler, J. P. ;
Hayes, D. ;
Stack, D. .
PHYSICAL REVIEW RESEARCH, 2020, 2 (01)
[3]   Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits [J].
Ballance, C. J. ;
Harty, T. P. ;
Linke, N. M. ;
Sepiol, M. A. ;
Lucas, D. M. .
PHYSICAL REVIEW LETTERS, 2016, 117 (06)
[4]   Triangular color codes on trivalent graphs with flag qubits [J].
Chamberland, Christopher ;
Kubica, Aleksander ;
Yoder, Theodore J. ;
Zhu, Guanyu .
NEW JOURNAL OF PHYSICS, 2020, 22 (02)
[5]   Surface codes: Towards practical large-scale quantum computation [J].
Fowler, Austin G. ;
Mariantoni, Matteo ;
Martinis, John M. ;
Cleland, Andrew N. .
PHYSICAL REVIEW A, 2012, 86 (03)
[6]   High-Fidelity Universal Gate Set for 9Be+ Ion Qubits [J].
Gaebler, J. P. ;
Tan, T. R. ;
Lin, Y. ;
Wan, Y. ;
Bowler, R. ;
Keith, A. C. ;
Glancy, S. ;
Coakley, K. ;
Knill, E. ;
Leibfried, D. ;
Wineland, D. J. .
PHYSICAL REVIEW LETTERS, 2016, 117 (06)
[7]   High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit [J].
Harty, T. P. ;
Allcock, D. T. C. ;
Ballance, C. J. ;
Guidoni, L. ;
Janacek, H. A. ;
Linke, N. M. ;
Stacey, D. N. ;
Lucas, D. M. .
PHYSICAL REVIEW LETTERS, 2014, 113 (22)
[8]   Eliminating Leakage Errors in Hyperfine Qubits [J].
Hayes, D. ;
Stack, D. ;
Bjork, B. ;
Potter, A. C. ;
Baldwin, C. H. ;
Stutz, R. P. .
PHYSICAL REVIEW LETTERS, 2020, 124 (17)
[9]   Geometric phase gate on an optical transition for ion trap quantum computation [J].
Kim, K. ;
Roos, C. F. ;
Aolita, L. ;
Haeffner, H. ;
Nebendahl, V. ;
Blatt, R. .
PHYSICAL REVIEW A, 2008, 77 (05)
[10]   Long-lived qubit memory using atomic ions [J].
Langer, C ;
Ozeri, R ;
Jost, JD ;
Chiaverini, J ;
DeMarco, B ;
Ben-Kish, A ;
Blakestad, RB ;
Britton, J ;
Hume, DB ;
Itano, WM ;
Leibfried, D ;
Reichle, R ;
Rosenband, T ;
Schaetz, T ;
Schmidt, PO ;
Wineland, DJ .
PHYSICAL REVIEW LETTERS, 2005, 95 (06)