Hierarchy of (2+1)-dimensional nonlinear Schrodinger equation, self-dual Yang-Mills equation, and toroidal Lie algebras

被引:17
作者
Kakei, S
Ikeda, T
Takasaki, K
机构
[1] Waseda Univ, Sch Sci & Engn, Dept Math Sci, Shinjyuku Ku, Tokyo 1698555, Japan
[2] Okayama Univ Sci, Dept Appl Math, Okayama 7000005, Japan
[3] Kyoto Univ, Fac Integrated Human Studies, Dept Fundamental Sci, Sakyo Ku, Kyoto 6068501, Japan
来源
ANNALES HENRI POINCARE | 2002年 / 3卷 / 05期
关键词
D O I
10.1007/s00023-002-8638-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The hierarchy structure associated with a (2 + 1)-dimensional Nonlinear Schrodinger equation is discussed as an extension of the theory of the KP hierarchy. Several methods to construct special solutions are given. The relation between the hierarchy and a representation of toroidal Lie algebras are established by using the language of free fermions. A relation to the self-dual Yang-Mills equation is also discussed.
引用
收藏
页码:817 / 845
页数:29
相关论文
共 41 条
[1]   Irreducible representations for toroidal Lie algebras [J].
Berman, S ;
Billig, Y .
JOURNAL OF ALGEBRA, 1999, 221 (01) :188-231
[2]   An extension of the Korteweg-de Vries hierarchy arising from a representation of a toroidal Lie algebra [J].
Billig, Y .
JOURNAL OF ALGEBRA, 1999, 217 (01) :40-64
[3]   BREAKING SOLITONS IN 2 + 1-DIMENSIONAL INTEGRABLE EQUATIONS [J].
BOGOYAVLENSKII, OI .
RUSSIAN MATHEMATICAL SURVEYS, 1990, 45 (04) :1-86
[4]  
BOGOYAVLENSKII OI, 1990, MATH USSR IZV+, V54, P129
[5]   NON-LINEAR PARTIAL-DIFFERENTIAL EQUATIONS AND BACKLUND-TRANSFORMATIONS RELATED TO THE 4-DIMENSIONAL SELF-DUAL YANG-MILLS EQUATIONS [J].
BRUSCHI, M ;
LEVI, D ;
RAGNISCO, O .
LETTERE AL NUOVO CIMENTO, 1982, 33 (09) :263-266
[6]   METHOD TO GENERATE SOLVABLE NONLINEAR EVOLUTION EQUATIONS [J].
CALOGERO, F .
LETTERE AL NUOVO CIMENTO, 1975, 14 (12) :443-447
[7]   CONSTRUCTION OF SELF-DUAL SOLUTIONS TO SU(2) GAUGE THEORY [J].
CORRIGAN, EF ;
FAIRLIE, DB ;
YATES, RG ;
GODDARD, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 58 (03) :223-240
[8]  
DATE E, 1983, P RIMS S NONL INT SY, P39
[9]  
Date E., 2000, CAMBRIDGE TRACTS MAT, V135
[10]  
DICKEY LA, 1996, PROGR NONLINEAR DIFF, V26