Entanglement dynamics in Coriolis coupled rovibrational states of formaldehyde

被引:3
作者
Hou, Xi-Wen [1 ]
Wan, Ming-Fang [2 ]
Ma, Zhong-Qi [3 ]
机构
[1] Huazhong Normal Univ, Dept Phys, Wuhan 430079, Peoples R China
[2] Wuhan Univ Technol, Sch Nat Sci, Wuhan 430079, Peoples R China
[3] Inst High Energy Phys, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
POLYATOMIC-MOLECULES; LINEAR ENTROPY; SUDDEN-DEATH; QUANTUM; MODEL;
D O I
10.1016/j.optcom.2009.06.016
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The entanglement dynamics of two vibrational modes of a polyatomic molecule coupled by Coriolis interaction to overall molecular rotation is studied in terms of two negativities, N(t) and N-s(t). respectively, defined by the minimum of the eigenvalues and by the sum of the negative eigenvalues of the partial transpose of a density matrix. Various initial states are the products of Dicke states and the products of coherent states of vibrations and rotations. Formaldehyde is taken as an example, and the von Neumann entropy s(t) is simulated for the comparison with both negativities. It is shown that negativity N-s(t) is positively correlated with entropy s(t), and the correlated behavior between negativity N(t) and entropy s(t) strongly depends on initial states. However, these three indicators of entanglement display a dominantly positive correlation for the coherent states with small or large parameters. In addition, for the latter state two quantities N(t) and s(t) are nearly unchanged for a long time. This time can be further increased by the increasing of vibrational quantum number so that molecular information processing and quantum computing is allowed. These results are useful in quantum information theory. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:3834 / 3838
页数:5
相关论文
共 41 条
[1]   Entanglement of a single-mode cavity QED of a Raman interaction [J].
Abdel-Aty, M. ;
Al-Showaikh, F. ;
Hassan, S. S. .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2007, 5 (1-2) :105-110
[2]   An investigation of entanglement and quasiprobability distribution in a generalized Jaynes-Cummings model [J].
Abdel-Aty, M .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (04) :1457-1471
[4]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[5]   Improving the entanglement transfer from continuous-variable systems to localized qubits using non-Gaussian states [J].
Casagrande, Federico ;
Lulli, Alfredo ;
Paris, Matteo G. A. .
PHYSICAL REVIEW A, 2007, 75 (03)
[6]   Concurrence of arbitrary dimensional bipartite quantum states [J].
Chen, K ;
Albeverio, S ;
Fei, SM .
PHYSICAL REVIEW LETTERS, 2005, 95 (04)
[7]   Quantum computing based on vibrational eigenstates: Pulse area theorem analysis [J].
Cheng, TW ;
Brown, A .
JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (03)
[8]   PREPARATION OF MACROSCOPIC SUPERPOSITIONS IN MANY-ATOM SYSTEMS [J].
CIRAC, JI ;
ZOLLER, P .
PHYSICAL REVIEW A, 1994, 50 (04) :R2799-R2802
[9]   Quantum dynamical manifestation of chaotic behavior in the process of entanglement [J].
Furuya, K ;
Nemes, MC ;
Pellegrino, GQ .
PHYSICAL REVIEW LETTERS, 1998, 80 (25) :5524-5527
[10]   The role of anharmonicity and coupling in quantum computing based on vibrational qubits [J].
Gollub, C ;
Troppmann, U ;
de Vivie-Riedle, R .
NEW JOURNAL OF PHYSICS, 2006, 8