Oblique optical solutions of mitigating internet bottleneck with quadratic-cubic nonlinearity

被引:7
作者
Ghanbari, Behzad [1 ]
Bekir, Ahmet [2 ]
Saeed, Rostam K. [3 ]
机构
[1] Kermanshah Univ Technol, Dept Engn Sci, Kermanshah, Iran
[2] Imarli St 28-4, TR-26030 Eskisehir, Turkey
[3] Salahaddin Univ, Coll Sci, Dept Math, Erbil, Iraq
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2019年 / 33卷 / 20期
关键词
Soliton; beta-derivative; optical solutions; generalized exponential rational function method; analytical solutions; symbolic computations; BISWAS-MILOVIC EQUATION; SOLITARY WAVE SOLUTIONS; POWER-LAW; SOLITONS; PERTURBATION; DISPERSION; TERMS; LUMP;
D O I
10.1142/S0217979219502242
中图分类号
O59 [应用物理学];
学科分类号
摘要
By using the generalized exponential rational function method, we construct the analytical solutions of the mitigating internet bottleneck with quadratic-cubic nonlinearity involving the beta-derivative. This equation is described to control internet traffic. A number of new optical soliton solution for them are calculated. Oblique optical solutions also emerge as a product of this integration scheme. The results are applicable to mitigate Internet bottleneck, which is a growing problem in the telecommunications industry.
引用
收藏
页数:18
相关论文
共 39 条
[1]   Study of optical soliton fibers with power law model by means of higher-order nonlinear Schrodinger dynamical system [J].
Alamri, Sultan Z. ;
Seadawy, Aly R. ;
Al-Sharari, Haya M. .
RESULTS IN PHYSICS, 2019, 13
[2]   Optical Solitons and Stability Analysis in Ring-Cavity Fiber System with Carbon Nanotube as Saturable Absorber [J].
Aliyu, Aliyu Isa ;
Inc, Mustafa ;
Yusuf, Abdullahi ;
Baleanu, Dumitru .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2018, 70 (05) :511-514
[3]   Optical solitary waves and conservation laws to the (2+1)-dimensional hyperbolic nonlinear Schrodinger equation [J].
Aliyu, Aliyu Isa ;
Inc, Mustafa ;
Yusuf, Abdullahi ;
Baleanu, Dumitru .
MODERN PHYSICS LETTERS B, 2018, 32 (30)
[4]   Symmetry Analysis, Explicit Solutions, and Conservation Laws of a Sixth-Order Nonlinear Ramani Equation [J].
Aliyu, Aliyu Isa ;
Inc, Mustafa ;
Yusuf, Abdullahi ;
Baleanu, Dumitru .
SYMMETRY-BASEL, 2018, 10 (08)
[5]   Analysis of time-fractional Hunter-Saxton equation: a model of neumatic liquid crystal [J].
Atangana, Abdon ;
Baleanu, Dumitru ;
Alsaedi, Ahmed .
OPEN PHYSICS, 2016, 14 (01) :145-149
[6]   Optical soliton perturbation with spatio-temporal dispersion in parabolic and dual-power law media by semi-inverse variational principle [J].
Bhrawy, A. H. ;
Alshaery, A. A. ;
Hilal, E. M. ;
Khan, Kaisar R. ;
Mahmood, Mohammad F. ;
Biswas, Anjan .
OPTIK, 2014, 125 (17) :4945-4950
[7]   Optical solitons with quadratic-cubic nonlinearity by semi-inverse variational principle [J].
Biswas, Anjan ;
Ullah, Malik Zaka ;
Asma, Mir ;
Zhou, Qin ;
Moshokoa, Seithuti P. ;
Belic, Milivoj .
OPTIK, 2017, 139 :16-19
[8]   Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics [J].
Dehghan, Mehdi ;
Hens, Jalil Manafian ;
Saadatmandi, Abbas .
INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2011, 21 (6-7) :736-753
[9]   Optical solitons with Biswas-Milovic equation for power law and dual-power law nonlinearities [J].
Eslami, M. ;
Mirzazadeh, M. .
NONLINEAR DYNAMICS, 2016, 83 (1-2) :731-738
[10]   An analytical method for soliton solutions of perturbed Schrodinger's equation with quadratic-cubic nonlinearity [J].
Ghanbari, Behzad ;
Raza, Nauman .
MODERN PHYSICS LETTERS B, 2019, 33 (03)