We study an ideally oriented system of Gay-Berne particles with embedded longitudinal dipole moments. While keeping the translational degrees of freedom of the molecules unrestricted we assume that their dipoles can be oriented either parallel or antiparallel to the positive z axis of the laboratory frame. At high temperatures, this frustrated Gay-Berne mesogen exhibits an ideally oriented nematic phase, which is the reference state of the system. In the limit of vanishing dipole moment nematic, smectic-A and smectic B phases are stable. Interestingly, by changing the magnitude and location of the molecular dipole in the nematic reference state we found dipole-induced smectic A, smectic B and tetragonal crystal phases, in addition to crystalline structures with smectic A(d) and A(2)-like dipolar organization. Various singlet, pair and triplet distribution functions were evaluated to elucidate short and long range organization in these phases. In particular, the importance of triplet correlations for a proper understanding of the structures and their local, dipolar organization is demonstrated.