The Evolution of Beam Spot in the Geomagnetic Field During Long-Range Propagation of Relativistic Electron Beam

被引:5
作者
Hao, Jian-Hong [1 ]
Xue, Bi-Xi [1 ,2 ]
Zhao, Qiang [2 ]
Zhang, Fang [2 ]
Fan, Jie-Qing [1 ]
Dong, Zhi-Wei [2 ]
机构
[1] North China Elect Power Univ, Elect & Elect Engn Dept, Beijing 102206, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
Atmospheric modeling; Terrestrial atmosphere; Detectors; Analytical models; Cyclotrons; Optical sensors; Mathematical model; Beam spot; Larmor precession; long-range propagation; Monte Carlo (MC) simulation; Relativistic electron beam;
D O I
10.1109/TPS.2020.3047128
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Research on the location and shape of a beam spot at a target altitude can lay the foundation for understanding and diagnosing the long-range propagation of relativistic electron beams. Only a few studies have focused on this approach. In this study, a terrestrial atmosphere with a 3-D geomagnetic field was constructed in accordance with the International Geomagnetic Reference Field model and a relevant atmosphere model. Monte Carlo simulations were applied to the long-range propagation of relativistic (1-10 MeV) electron beams in the altitude range of 200-300 km. The results showed that when beams with various parameters were emitted in one location, the centers of the beam spots were distributed in concentric circles with different radii. The direction of the geomagnetic field determined the locations of the circle centers, whereas the beam energy and pitch angle determined the radii. When the initial gyrophase changed, the center of the beam spot rotated through the same angle. The beam spot was distributed as a partial ring with a width mainly related to the initial beam radius when the energy spread was relatively small. If the energy spread exceeded the limit, the beam spot was ring-shaped; the ring width was determined by both the initial beam radius and the energy spread.
引用
收藏
页码:742 / 748
页数:7
相关论文
共 21 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]   Geant4 developments and applications [J].
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Dubois, PA ;
Asai, M ;
Barrand, G ;
Capra, R ;
Chauvie, S ;
Chytracek, R ;
Cirrone, GAP ;
Cooperman, G ;
Cosmo, G ;
Cuttone, G ;
Daquino, GG ;
Donszelmann, M ;
Dressel, M ;
Folger, G ;
Foppiano, F ;
Generowicz, J ;
Grichine, V ;
Guatelli, S ;
Gumplinger, P ;
Heikkinen, A ;
Hrivnacova, I ;
Howard, A ;
Incerti, S ;
Ivanchenko, V ;
Johnson, T ;
Jones, F ;
Koi, T ;
Kokoulin, R ;
Kossov, M ;
Kurashige, H ;
Lara, V ;
Larsson, S ;
Lei, F ;
Link, O ;
Longo, F ;
Maire, M ;
Mantero, A ;
Mascialino, B ;
McLaren, I ;
Lorenzo, PM ;
Minamimoto, K ;
Murakami, K ;
Nieminen, P ;
Pandola, L ;
Parlati, S ;
Peralta, L .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (01) :270-278
[3]   The International Reference Ionosphere 2012-a model of international collaboration [J].
Bilitza, Dieter ;
Altadill, David ;
Zhang, Yongliang ;
Mertens, Chris ;
Truhlik, Vladimir ;
Richards, Phil ;
McKinnell, Lee-Anne ;
Reinisch, Bodo .
JOURNAL OF SPACE WEATHER AND SPACE CLIMATE, 2014, 4
[4]   Active Experiments in Space: The Future [J].
Borovsky, Joseph E. ;
Delzanno, Gian Luca .
FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2019, 6
[6]   Geant4 hadronic physics for space radiation environment [J].
Ivantchenko, Anton V. ;
Ivanchenko, Vladimir N. ;
Quesada, Jose-Manuel ;
Incerti, Sebastien L. .
INTERNATIONAL JOURNAL OF RADIATION BIOLOGY, 2012, 88 (1-2) :171-175
[7]  
Krause L.H., 1998, THESIS U MICHIGAN AN
[8]   Pitch Angle Dependence of Energetic Electron Precipitation: Energy Deposition, Backscatter, and the Bounce Loss Cone [J].
Marshall, R. A. ;
Bortnik, J. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (03) :2412-2423
[9]   Diagnostics of an artificial relativistic electron beam interacting with the atmosphere [J].
Marshall, R. A. ;
Nicolls, M. ;
Sanchez, E. ;
Lehtinen, N. G. ;
Neilson, J. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2014, 119 (10) :8560-8577
[10]  
Marshall R. A, 2019, DYNAMIC LOSS EARTHS, P229