Lung Nodule Segmentation with a Region-Based Fast Marching Method

被引:32
作者
Savic, Marko [1 ,2 ]
Ma, Yanhe [3 ]
Ramponi, Giovanni [1 ]
Du, Weiwei [2 ]
Peng, Yahui [4 ]
机构
[1] Univ Trieste, Dept Engn & Architecture, Piazzale Europa 1, I-34127 Trieste, Italy
[2] Kyoto Inst Technol, Informat & Human Sci, Sakyo Ku, Hachigami Cho, Kyoto 6068585, Japan
[3] Tianjin Chest Hosp, Tianjin 300051, Peoples R China
[4] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
segmentation; fast marching method; lung nodules; computed tomography; lung phantom; IMAGE DATABASE CONSORTIUM; PULMONARY NODULES; AUTOMATIC DETECTION; CT; ALGORITHMS; VALIDATION; COVID-19; SOCIETY; LIDC;
D O I
10.3390/s21051908
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
When dealing with computed tomography volume data, the accurate segmentation of lung nodules is of great importance to lung cancer analysis and diagnosis, being a vital part of computer-aided diagnosis systems. However, due to the variety of lung nodules and the similarity of visual characteristics for nodules and their surroundings, robust segmentation of nodules becomes a challenging problem. A segmentation algorithm based on the fast marching method is proposed that separates the image into regions with similar features, which are then merged by combining regions growing with k-means. An evaluation was performed with two distinct methods (objective and subjective) that were applied on two different datasets, containing simulation data generated for this study and real patient data, respectively. The objective experimental results show that the proposed technique can accurately segment nodules, especially in solid cases, given the mean Dice scores of 0.933 and 0.901 for round and irregular nodules. For non-solid and cavitary nodules the performance dropped-0.799 and 0.614 mean Dice scores, respectively. The proposed method was compared to active contour models and to two modern deep learning networks. It reached better overall accuracy than active contour models, having comparable results to DBResNet but lesser accuracy than 3D-UNet. The results show promise for the proposed method in computer-aided diagnosis applications.
引用
收藏
页码:1 / 32
页数:32
相关论文
共 70 条
[1]   Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening [J].
Aberle, Denise R. ;
Adams, Amanda M. ;
Berg, Christine D. ;
Black, William C. ;
Clapp, Jonathan D. ;
Fagerstrom, Richard M. ;
Gareen, Ilana F. ;
Gatsonis, Constantine ;
Marcus, Pamela M. ;
Sicks, JoRean D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) :395-409
[2]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[3]   A novel framework for rapid diagnosis of COVID-19 on computed tomography scans [J].
Akram, Tallha ;
Attique, Muhammad ;
Gul, Salma ;
Shahzad, Aamir ;
Altaf, Muhammad ;
Naqvi, S. Syed Rameez ;
Damasevicius, Robertas ;
Maskeliunas, Rytis .
PATTERN ANALYSIS AND APPLICATIONS, 2021, 24 (03) :951-964
[4]  
[Anonymous], 2017, ADV COMPUTER SCI REA
[5]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[6]   Recommendations for Measuring Pulmonary Nodules at CT: A Statement from the Fleischner Society [J].
Bankier, Alexander A. ;
MacMahon, Heber ;
Goo, Jin Mo ;
Rubin, Geoffrey D. ;
Schaefer-Prokop, Cornelia M. ;
Naidich, David P. .
RADIOLOGY, 2017, 285 (02) :584-600
[7]  
Benhabiles Halim, 2010, 2010 IEEE 12th International Workshop on Multimedia Signal Processing (MMSP), P356, DOI 10.1109/MMSP.2010.5662046
[8]   A comparison of ground truth estimation methods [J].
Biancardi, Alberto M. ;
Jirapatnakul, Artit C. ;
Reeves, Anthony P. .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2010, 5 (03) :295-305
[9]   An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision [J].
Boykov, Y ;
Kolmogorov, V .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (09) :1124-1137
[10]   British Thoracic Society guidelines for the investigation and management of pulmonary nodules [J].
Callister, M. E. J. ;
Baldwin, D. R. ;
Akram, A. R. ;
Barnard, S. ;
Cane, P. ;
Draffan, J. ;
Franks, K. ;
Gleeson, F. ;
Graham, R. ;
Malhotra, P. ;
Prokop, M. ;
Rodger, K. ;
Subesinghe, M. ;
Waller, D. ;
Woolhouse, I. .
THORAX, 2015, 70 :1-54