Critical assessment of methods of protein structure prediction (CASP)-Round XIII

被引:319
作者
Kryshtafovych, Andriy [1 ]
Schwede, Torsten [2 ,3 ]
Topf, Maya [4 ]
Fidelis, Krzysztof [1 ]
Moult, John [5 ,6 ]
机构
[1] Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA
[2] Univ Basel, Biozentrum, Basel, Switzerland
[3] Univ Basel, SIB, Basel, Switzerland
[4] Univ London, Birkbeck Coll, Inst Struct & Mol Biol, London, England
[5] Inst Biosci & Biotechnol Res, 9600 Gudelsky Dr, Rockville, MD 20850 USA
[6] Univ Maryland, Dept Cell Biol & Mol Genet, College Pk, MD 20742 USA
关键词
CASP; community wide experiment; protein structure prediction; REFINEMENT CATEGORY; CONTACT PREDICTION;
D O I
10.1002/prot.25823
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CASP (critical assessment of structure prediction) assesses the state of the art in modeling protein structure from amino acid sequence. The most recent experiment (CASP13 held in 2018) saw dramatic progress in structure modeling without use of structural templates (historically "ab initio" modeling). Progress was driven by the successful application of deep learning techniques to predict inter-residue distances. In turn, these results drove dramatic improvements in three-dimensional structure accuracy: With the proviso that there are an adequate number of sequences known for the protein family, the new methods essentially solve the long-standing problem of predicting the fold topology of monomeric proteins. Further, the number of sequences required in the alignment has fallen substantially. There is also substantial improvement in the accuracy of template-based models. Other areas-model refinement, accuracy estimation, and the structure of protein assemblies-have again yielded interesting results. CASP13 placed increased emphasis on the use of sparse data together with modeling and chemical crosslinking, SAXS, and NMR all yielded more mature results. This paper summarizes the key outcomes of CASP13. The special issue of PROTEINS contains papers describing the CASP13 assessments in each modeling category and contributions from the participants.
引用
收藏
页码:1011 / 1020
页数:10
相关论文
共 44 条
  • [1] DEEPCON: protein contact prediction using dilated convolutional neural networks with dropout
    Adhikari, Badri
    [J]. BIOINFORMATICS, 2020, 36 (02) : 470 - 477
  • [2] Deep Audio-Visual Speech Recognition
    Afouras, Triantafyllos
    Chung, Joon Son
    Senior, Andrew
    Vinyals, Oriol
    Zisserman, Andrew
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 8717 - 8727
  • [3] Modeling complexes of modeled proteins
    Anishchenko, Ivan
    Kundrotas, Petras J.
    Vakser, Ilya A.
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2017, 85 (03) : 470 - 478
  • [4] State-of-the-art review on deep learning in medical imaging
    Biswas, Mainak
    Kuppili, Venkatanareshbabu
    Saba, Luca
    Edla, Damodar Reddy
    Suri, Harman S.
    Cuadrado-Godia, Elisa
    Laird, John R.
    Marinhoe, Rui Tato
    Sanches, Joao M.
    Nicolaides, Andrew
    Suri, Jasjit S.
    [J]. FRONTIERS IN BIOSCIENCE-LANDMARK, 2019, 24 : 392 - 426
  • [5] Boolean analysis reveals systematic interactions among low-abundance species in the human gut microbiome
    Claussen, Jens Christian
    Skieceviciene, Jurgita
    Wang, Jun
    Rausch, Philipp
    Karlsen, Tom H.
    Lieb, Wolfgang
    Baines, John F.
    Franke, Andre
    Huett, Marc-Thorsten
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (06)
  • [6] Emerging methods in protein co-evolution
    de Juan, David
    Pazos, Florencio
    Valencia, Alfonso
    [J]. NATURE REVIEWS GENETICS, 2013, 14 (04) : 249 - 261
  • [7] The Current Revolution in Cryo-EM
    Egelman, Edward H.
    [J]. BIOPHYSICAL JOURNAL, 2016, 110 (05) : 1008 - 1012
  • [8] Discovery of receptor-ligand interfaces in the immunoglobulin superfamily
    Gil, Nelson
    Fajardo, Eduardo J.
    Fiser, Andras
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2020, 88 (01) : 135 - 142
  • [9] CORRELATED MUTATIONS AND RESIDUE CONTACTS IN PROTEINS
    GOBEL, U
    SANDER, C
    SCHNEIDER, R
    VALENCIA, A
    [J]. PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1994, 18 (04): : 309 - 317
  • [10] Assessment of protein assembly prediction in CASP13
    Guzenko, Dmytro
    Lafita, Aleix
    Monastyrskyy, Bohdan
    Kryshtafovych, Andriy
    Duarte, Jose M.
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2019, 87 (12) : 1190 - 1199