Noncooperative target classification using hierarchical modeling of high-range resolution radar signatures

被引:31
作者
Eom, KB [1 ]
Chellappa, R [1 ]
机构
[1] UNIV MARYLAND, DEPT ELECT ENGN, COLLEGE PK, MD 20742 USA
关键词
classification; multiscale; radar; target recognition;
D O I
10.1109/78.622954
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The classification of high-range resolution (HRR) radar signatures using multiscale features is considered, We present a hierarchical autoregressive moving average (ARMA) model for modeling HRR radar signals at multiple scales and use spectral features extracted from the model for classifying radar signatures, First, we show that the radar signal at a different scale obeys an ARMA process if it is an ARMA process at the observed scale, Then, an algorithm to estimate model parameters and power spectral density function at different scales using model parameters at the observed scale is presented. A feature set composed of spectral peaks is extracted from the estimated spectral density function using multiscale ARMA models, For HRR radar signature classification, multispectral features extracted from five different scales are used, and a minimum distance classifier with multiple prototypes is used to classify HRR data. The multiscale classifier is applied to two HRR radar data sets. Each data set contains 2500 test samples and 2500 training samples in five classes, For both data sets, about 95% of the radar returns are correctly classified.
引用
收藏
页码:2318 / 2327
页数:10
相关论文
共 26 条