HIGH-DIMENSIONAL LEAST SQUARE MATRIX REGRESSION VIA ELASTIC NET PENALTY

被引:0
作者
Chen, Bingzhen [1 ]
Kong, Lingchen [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Appl Math, Beijing 100044, Peoples R China
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2017年 / 13卷 / 02期
基金
中国国家自然科学基金;
关键词
high-dimensional matrix regression; matrix least square; matrix elastic net; grouping effect; VARIABLE SELECTION;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Matrix regression model was recently developed by Zhou and Li [Journal of the Royal Statistical Society, Series B, 2014, 76: 463-483] and Negahban and Wainwright [Annals of Statistics, 2011, 39(2): 10691097] and Obozinski, Wainwright and Jordan [Annals of Statistics, 2011, 39(1): 1-47]. In this paper, we focus on high-dimensional least square matrix regression via elastic net penalty, which can deal with group variables. We show that elastic net-penalized matrix regression has grouping effect property. Moreover, we give a upper bound of deviation between two correlated prediction vectors. Finally we propose the VNS-EN method to compute the estimator of elastic net-penalized matrix regression. We give its convergence results and iteration-complexity. The numerical experiments are reported.
引用
收藏
页码:185 / 196
页数:12
相关论文
共 17 条
[1]  
[Anonymous], SIAM J OPTIM UNPUB
[2]   GENERALIZED DOUBLE PARETO SHRINKAGE [J].
Armagan, Artin ;
Dunson, David B. ;
Lee, Jaeyong .
STATISTICA SINICA, 2013, 23 (01) :119-143
[3]   Enhancing Sparsity by Reweighted l1 Minimization [J].
Candes, Emmanuel J. ;
Wakin, Michael B. ;
Boyd, Stephen P. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (5-6) :877-905
[4]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499
[5]   Variable selection via nonconcave penalized likelihood and its oracle properties [J].
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1348-1360
[6]   A STATISTICAL VIEW OF SOME CHEMOMETRICS REGRESSION TOOLS [J].
FRANK, IE ;
FRIEDMAN, JH .
TECHNOMETRICS, 1993, 35 (02) :109-135
[7]  
Hastie T., 2000, Genome Biol., V1, P1, DOI DOI 10.1186/GB-2000-1-2-RESEARCH0003
[8]   Convex optimization methods for dimension reduction and coefficient estimation in multivariate linear regression [J].
Lu, Zhaosong ;
Monteiro, Renato D. C. ;
Yuan, Ming .
MATHEMATICAL PROGRAMMING, 2012, 131 (1-2) :163-194
[9]   ESTIMATION OF (NEAR) LOW-RANK MATRICES WITH NOISE AND HIGH-DIMENSIONAL SCALING [J].
Negahban, Sahand ;
Wainwright, Martin J. .
ANNALS OF STATISTICS, 2011, 39 (02) :1069-1097
[10]   Smooth minimization of non-smooth functions [J].
Nesterov, Y .
MATHEMATICAL PROGRAMMING, 2005, 103 (01) :127-152