Thermal conductivity of carbon nanotube: From ballistic to diffusive transport

被引:39
作者
Hou Quan-Wen [1 ]
Cao Bing-Yang [1 ]
Guo Zeng-Yuan [1 ]
机构
[1] Tsinghua Univ, Sch Aerosp, Minist Educ, Key Lab Thermal Sci & Power Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon nanotube; thermal conductivity; ballistic transport; low-dimensional heat conduction; MOLECULAR-DYNAMICS; LENGTH DEPENDENCE; HEAT-CONDUCTION; TEMPERATURE;
D O I
10.7498/aps.58.7809
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Length dependence of the thermal conductivity of (5, 5) carbon nanotube at 300 K and 1000 K is studied by nonequilibrium molecular dynamics simulations. At room temperature the thermal conductivity shows linear length dependence for the tube length less than 40 nm, which shows completely ballistic transport. The calculated ballistic thermal conductance per unit area is 5.88 x 10(9) Wm(-2) K-1. The thermal conductivity increases with the increase of the nanotube length, but the increase rate decreases as the length increases. It shows that the phonon transport is in the ballistic-diffusive regime, and transits from ballistic to diffusive with increase of the tube length. The thermal conduction is close to completely diffusive transport and the ballistic transport can be ignored when the nanotube is longer than 10 mu m. In the simulations, the power exponent of the thermal conductivity of carbon nanotube to the tube length decreases by decaying exponential function as the tube length increases. Different from one-dimensional material, in the thermodynamic limit, a completely diffusive transport will dominate the thermal transport in carbon nanotubes, and the thermal conductivity will converge to a finite value.
引用
收藏
页码:7809 / 7814
页数:6
相关论文
共 29 条
[1]   Study of thermal conduction of carbon nanotube by molecular dynamics [J].
Bao Wen-Xing ;
Zhu Chang-Chun .
ACTA PHYSICA SINICA, 2006, 55 (07) :3552-3557
[2]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[3]   Unusually high thermal conductivity of carbon nanotubes [J].
Berber, S ;
Kwon, YK ;
Tománek, D .
PHYSICAL REVIEW LETTERS, 2000, 84 (20) :4613-4616
[4]   EMPIRICAL POTENTIAL FOR HYDROCARBONS FOR USE IN SIMULATING THE CHEMICAL VAPOR-DEPOSITION OF DIAMOND FILMS [J].
BRENNER, DW .
PHYSICAL REVIEW B, 1990, 42 (15) :9458-9471
[5]   Thermal conductivity of zigzag single-walled carbon nanotubes: Role of the umklapp process [J].
Cao, JX ;
Yan, XH ;
Xiao, Y ;
Ding, JW .
PHYSICAL REVIEW B, 2004, 69 (07)
[6]   Breakdown of Fourier's law in nanotube thermal conductors [J].
Chang, C. W. ;
Okawa, D. ;
Garcia, H. ;
Majumdar, A. ;
Zettl, A. .
PHYSICAL REVIEW LETTERS, 2008, 101 (07)
[7]   Effects of anisotropy, aspect ratio, and nonstraightness of carbon nanotubes on thermal conductivity of carbon nanotube composites [J].
Deng, Fei ;
Zheng, Quan-Shui ;
Wang, Li-Feng ;
Nan, Ce-Wen .
APPLIED PHYSICS LETTERS, 2007, 90 (02)
[8]   Phonons in carbon nanotubes [J].
Dresselhaus, MS ;
Eklund, PC .
ADVANCES IN PHYSICS, 2000, 49 (06) :705-814
[9]   Thermal transport in nanofluids [J].
Eastman, JA ;
Phillpot, SR ;
Choi, SUS ;
Keblinski, P .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2004, 34 :219-246
[10]   Measuring the thermal conductivity of a single carbon nanotube [J].
Fujii, M ;
Zhang, X ;
Xie, HQ ;
Ago, H ;
Takahashi, K ;
Ikuta, T ;
Abe, H ;
Shimizu, T .
PHYSICAL REVIEW LETTERS, 2005, 95 (06)