Tractography Segmentation Using a Hierarchical Dirichlet Processes Mixture Model

被引:0
作者
Wang, Xiaogang [2 ]
Grimson, W. Eric L. [1 ]
Westin, Carl-Fredrik [3 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
[2] Chinese Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
[3] Brigham & Womens Hosp, Harvard Med Sch, Dept Radiol, Lab Math Imaging, Boston, MA 02215 USA
来源
INFORMATION PROCESSING IN MEDICAL IMAGING, PROCEEDINGS | 2009年 / 5636卷
关键词
CLASSIFICATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a new nonparametric Bayesian framework to cluster white matter fiber tracts into bundles using a hierarchical Dirichlet processes mixture (HDPM) model. The number of clusters is automatically learnt from data with a Dirichlet process (DP) prior instead of being manually specified. After the models of bundles have been learnt from training data without supervision, they can be used as priors to cluster/classify fibers of new subjects. When clustering fibers of new subjects, new clusters can be created for structures not observed in the training data. Our approach does not require computing pairwise distances between fibers and can cluster a huge set of fibers across multiple subjects without subsampling. We present results on multiple data sets, the largest of which has more than 120, 000 fibers.
引用
收藏
页码:101 / +
页数:3
相关论文
共 19 条
  • [1] ADELINO R, 2006, MED IMAGE ANAL, V11, P169
  • [2] ASUNCION A, 2008, P NIPS
  • [3] Variational Inference for Dirichlet Process Mixtures
    Blei, David M.
    Jordan, Michael I.
    [J]. BAYESIAN ANALYSIS, 2006, 1 (01): : 121 - 143
  • [4] Brun A, 2004, LECT NOTES COMPUT SC, V3216, P368
  • [5] Classification and quantification of neuronal fiber pathways using diffusion tensor MRI
    Ding, ZH
    Gore, JC
    Anderson, AW
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2003, 49 (04) : 716 - 721
  • [6] BAYESIAN ANALYSIS OF SOME NONPARAMETRIC PROBLEMS
    FERGUSON, TS
    [J]. ANNALS OF STATISTICS, 1973, 1 (02) : 209 - 230
  • [7] Gerig G, 2004, P ANN INT IEEE EMBS, V26, P4421
  • [8] Multiple-subjects connectivity-based parcellation using hierarchical Dirichlet process mixture models
    Jbabdi, S.
    Woolrich, M. W.
    Behrens, T. E. J.
    [J]. NEUROIMAGE, 2009, 44 (02) : 373 - 384
  • [9] JONASSON L, 2005, INT SOC MAG RESON ME, P1310
  • [10] KIM S, 2006, P NIPS, P697