Weighted multidegrees of polynomial automorphisms over a domain

被引:2
作者
Kuroda, Shigeru [1 ]
机构
[1] Tokyo Metropolitan Univ, Dept Math & Informat Sci, 1-1 Minami Osawa, Hachioji, Tokyo 1920397, Japan
基金
日本学术振兴会;
关键词
tame automorphism; stable coordinate; weighted degree; WILD AUTOMORPHISMS; TAME; INVARIANTS;
D O I
10.2969/jmsj/06810119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of the weighted degree of a polynomial is a basic tool in Affine Algebraic Geometry. In this paper, we study the properties of the weighted multidegrees of polynomial automorphisms by a new approach which focuses on stable coordinates. We also present some applications of the generalized Shestakov-Umirbaev theory.
引用
收藏
页码:119 / 149
页数:31
相关论文
共 25 条
[21]   The tame and the wild automorphisms of polynomial rings in three variables [J].
Shestakov, IP ;
Umirbaev, UU .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (01) :197-227
[22]   Poisson brackets and two-generated subalgebras of rings of polynomials [J].
Shestakov, IP ;
Umirbaev, UU .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (01) :181-196
[23]   Affine varieties with equivalent cylinders [J].
Shpilrain, V ;
Yu, JT .
JOURNAL OF ALGEBRA, 2002, 251 (01) :295-307
[24]   Multidegrees of Tame Automorphisms in Dimension Three [J].
Sun, Xiaosong ;
Chen, Yan .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2012, 48 (01) :129-137
[25]  
van der Kulk W., 1953, Nieuw Arch. Wisk, V3, P33