Weighted multidegrees of polynomial automorphisms over a domain

被引:2
作者
Kuroda, Shigeru [1 ]
机构
[1] Tokyo Metropolitan Univ, Dept Math & Informat Sci, 1-1 Minami Osawa, Hachioji, Tokyo 1920397, Japan
基金
日本学术振兴会;
关键词
tame automorphism; stable coordinate; weighted degree; WILD AUTOMORPHISMS; TAME; INVARIANTS;
D O I
10.2969/jmsj/06810119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of the weighted degree of a polynomial is a basic tool in Affine Algebraic Geometry. In this paper, we study the properties of the weighted multidegrees of polynomial automorphisms by a new approach which focuses on stable coordinates. We also present some applications of the generalized Shestakov-Umirbaev theory.
引用
收藏
页码:119 / 149
页数:31
相关论文
共 25 条
[1]  
Asanuma T., 1974, OSAKA J MATH, V11, P587
[2]   ON RESIDUAL VARIABLES AND STABLY POLYNOMIAL ALGEBRAS [J].
BHATWADEKAR, SM ;
DUTTA, AK .
COMMUNICATIONS IN ALGEBRA, 1993, 21 (02) :635-645
[3]   Newton polytopes of invariants of additive group actions [J].
Derksen, H ;
Hadas, O ;
Makar-Limanov, L .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 156 (2-3) :187-197
[4]  
DICKS W, 1983, PUBL SEC MAT U AUTON, V27, P155
[5]   Separability of wild automorphisms of a polynomial ring [J].
Edo, E. ;
Kanehira, T. ;
Karas, M. ;
Kuroda, S. .
TRANSFORMATION GROUPS, 2013, 18 (01) :81-96
[6]   On total birational transformations of the plane. [J].
Jung, WE .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1942, 184 (1/4) :161-174
[7]  
Kanehira T., 2012, THESIS TOKYO METROPO
[8]   On multidegrees of tame and wild automorphisms of C3 [J].
Karas, Marek ;
Zygadlo, Jakub .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (12) :2843-2846
[9]   THERE IS NO TAME AUTOMORPHISM OF C3 WITH MULTIDEGREE (3,4,5) [J].
Karas, Marek .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (03) :769-775
[10]  
Kuroda S, 2002, OSAKA J MATH, V39, P665