Weighted multidegrees of polynomial automorphisms over a domain

被引:1
作者
Kuroda, Shigeru [1 ]
机构
[1] Tokyo Metropolitan Univ, Dept Math & Informat Sci, 1-1 Minami Osawa, Hachioji, Tokyo 1920397, Japan
基金
日本学术振兴会;
关键词
tame automorphism; stable coordinate; weighted degree; WILD AUTOMORPHISMS; TAME; INVARIANTS;
D O I
10.2969/jmsj/06810119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of the weighted degree of a polynomial is a basic tool in Affine Algebraic Geometry. In this paper, we study the properties of the weighted multidegrees of polynomial automorphisms by a new approach which focuses on stable coordinates. We also present some applications of the generalized Shestakov-Umirbaev theory.
引用
收藏
页码:119 / 149
页数:31
相关论文
共 25 条
  • [1] Asanuma T., 1974, OSAKA J MATH, V11, P587
  • [2] ON RESIDUAL VARIABLES AND STABLY POLYNOMIAL ALGEBRAS
    BHATWADEKAR, SM
    DUTTA, AK
    [J]. COMMUNICATIONS IN ALGEBRA, 1993, 21 (02) : 635 - 645
  • [3] Newton polytopes of invariants of additive group actions
    Derksen, H
    Hadas, O
    Makar-Limanov, L
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 156 (2-3) : 187 - 197
  • [4] DICKS W, 1983, PUBL SEC MAT U AUTON, V27, P155
  • [5] Separability of wild automorphisms of a polynomial ring
    Edo, E.
    Kanehira, T.
    Karas, M.
    Kuroda, S.
    [J]. TRANSFORMATION GROUPS, 2013, 18 (01) : 81 - 96
  • [6] On total birational transformations of the plane.
    Jung, WE
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1942, 184 (1/4): : 161 - 174
  • [7] Kanehira T., 2012, THESIS TOKYO METROPO
  • [8] On multidegrees of tame and wild automorphisms of C3
    Karas, Marek
    Zygadlo, Jakub
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (12) : 2843 - 2846
  • [9] THERE IS NO TAME AUTOMORPHISM OF C3 WITH MULTIDEGREE (3,4,5)
    Karas, Marek
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (03) : 769 - 775
  • [10] Kuroda S, 2002, OSAKA J MATH, V39, P665