High frequency millimetre wave absorbers derived from polymeric nanocomposites

被引:184
作者
Pawar, Shital Patangrao [1 ]
Biswas, Sourav [1 ]
Kar, Goutam Prasanna [1 ]
Bose, Suryasarathi [1 ]
机构
[1] Indian Inst Sci, Dept Mat Engn, Bangalore 560012, Karnataka, India
关键词
EMI shielding; Microwave attenuation; Complex microwave properties; Polymer nanocomposites; MULTIWALL CARBON NANOTUBES; INTERFERENCE SHIELDING EFFICIENCY; MICROWAVE-ABSORPTION PROPERTIES; REDUCED GRAPHENE OXIDE; ELECTRICAL-CONDUCTIVITY; COMPLEX PERMITTIVITY; ASPECT-RATIO; POLY(VINYLIDENE FLUORIDE); POLYANILINE COMPOSITES; MAGNETIC NANOPARTICLES;
D O I
10.1016/j.polymer.2016.01.010
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The world has dominated by automation, wireless communication and various electronic equipments, which has led to the most undesirable offshoots like electromagnetic (EM) pollution. The rationale is environmental concern and the necessity to develop EM absorbing materials. This paper reviews the state of the art of designing polymer based nanocomposites containing nanoscopic particles with high electrical conductivity and complex microwave properties for enhanced EM attenuation. Given the brevity of this review article, herein we have summarized the high frequency millimetre wave absorbing properties of polymer nanocomposites consisting of various nanoparticles that either reflect or absorb microwave radiation like electrically conducting carbon nanotubes (CNTs) and graphene nanosheets (GNs), high dielectric constant ceramic nanoparticles that show relaxation loss in the microwave frequency and magnetic metal and ferrite nanoparticles that absorb microwave radiation through natural resonance, eddy current and hysteresis losses. Furthermore, we have stressed the necessity and impact of hybrid nanoparticles consisting of magnetic and dielectric nanoparticles along with conducting inclusions like CNT and GNs in this review. Electromagnetic interference (EMI) theory and necessary criterion for attenuation has been briefly discussed. The emphasis is made on various mechanisms towards EM attenuation controlled by these nanoparticles. Various structures developed using polymer nanocomposites like bulk, foam and layered structures and their effect on EM attenuation has been elaborately discussed. In addition, various covalent/non-covalent modifications on nanoparticles have been juxtaposed in context to EM attenuation. In addition, we have highlighted important facets and direction for enhancing the microwave attenuation. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:398 / 419
页数:22
相关论文
共 194 条
[1]   Complex permittivity, complex permeability and microwave absorption properties of ferrite-polymer composites [J].
Abbas, S. M. ;
Dixit, A. K. ;
Chatterjee, R. ;
Goel, T. C. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 309 (01) :20-24
[2]   Complex permittivity and microwave absorption properties of a composite dielectric absorber [J].
Abbas, S. M. ;
Chandra, Mahesh ;
Verma, A. ;
Chatterjee, R. ;
Goel, T. C. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2006, 37 (11) :2148-2154
[3]   Electromagnetic and microwave absorption properties of (Co2+-Si4+) substituted barium hexaferrites and its polymer composite [J].
Abbas, S. M. ;
Chatterjee, R. ;
Dixit, A. K. ;
Kumar, A. V. R. ;
Goel, T. C. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (07)
[4]   Highly efficient electromagnetic interference shielding using graphite nanoplatelet/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) composites with enhanced thermal conductivity [J].
Agnihotri, Nidhi ;
Chakrabarti, Kuntal ;
De, Amitabha .
RSC ADVANCES, 2015, 5 (54) :43765-43771
[5]   New electromagnetic wave shielding effectiveness at microwave frequency of polyvinyl chloride reinforced graphite/copper nanoparticles [J].
Al-Ghamdi, A. A. ;
El-Tantawy, Farid .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2010, 41 (11) :1693-1701
[6]   EMI shielding effectiveness of carbon based nanostructured polymeric materials: A comparative study [J].
Al-Saleh, Mohammed H. ;
Saadeh, Walaa H. ;
Sundararaj, Uttandaraman .
CARBON, 2013, 60 :146-156
[7]   Electromagnetic interference shielding mechanisms of CNT/polymer composites [J].
Al-Saleh, Mohammed H. ;
Sundararaj, Uttandaraman .
CARBON, 2009, 47 (07) :1738-1746
[8]   A review of vapor grown carbon nanofiber/polymer conductive composites [J].
Al-Saleh, Mohammed H. ;
Sundararaj, Uttandaraman .
CARBON, 2009, 47 (01) :2-22
[9]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[10]   Electrical and electromagnetic interference shielding properties of flow-induced oriented carbon nanotubes in polycarbonate [J].
Arjmand, Mohammad ;
Mahmoodi, Mehdi ;
Gelves, Genaro A. ;
Park, Simon ;
Sundararaj, Uttandaraman .
CARBON, 2011, 49 (11) :3430-3440