Quasianalytic Wave Front Sets for Solutions of Linear Partial Differential Operators

被引:18
作者
Albanese, A. A. [1 ]
Jornet, D. [2 ]
Oliaro, A. [3 ]
机构
[1] Univ Salento Lecce, Dipartimento Matemat E De Giorgi, I-73100 Lecce, Italy
[2] Univ Politecn Valencia, IUMPA, E-46022 Valencia, Spain
[3] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
关键词
Quasianalytic weight function; wave front set; propagation of singularities; ULTRADIFFERENTIABLE FUNCTIONS; CONVOLUTION-OPERATORS; ULTRADISTRIBUTIONS;
D O I
10.1007/s00020-010-1742-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we introduce and study Beurling and Roumieu quasianalytic (and nonquasianalytic) wave front sets, WF(*), of classical distributions. In particular, we have the following inclusion WF(*)(u) subset of WF(*)(Pu)boolean OR Sigma, u is an element of D'(Omega), where Omega is an open subset of R(n), P is a linear partial differential operator with coefficients in a suitable ultradifferentiable class, and Sigma is the characteristic set of P. Some applications are also investigated.
引用
收藏
页码:153 / 181
页数:29
相关论文
共 24 条
[11]   Pseudodifferential operators of Beurling type and the wave front set [J].
Fernandez, C. ;
Galbis, A. ;
Jornet, D. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (02) :1153-1170
[12]   Superposition in classes of ultradifferentiable functions [J].
Fernandez, Carmen ;
Galbis, Antonio .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2006, 42 (02) :399-419
[13]   A support theorem for quasianalytic functionals [J].
Heinrich, Tobias ;
Meise, Reinhold .
MATHEMATISCHE NACHRICHTEN, 2007, 280 (04) :364-387
[14]  
Hormander, 1990, ANAL LINEAR PARTIAL
[16]  
Kato M., 1969, P INT C FUNCT AN REL, P91
[17]  
KOMATSU H, 1973, J FAC SCI U TOKYO 1, V20, P25
[18]  
Meise R., 1997, Introduction to Functional Analysis
[19]   CONCAVE MAJORANTS OF POSITIVE FUNCTIONS [J].
PEETRE, J .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1970, 21 (3-4) :327-&
[20]   ALMOST ANALYTIC EXTENSION OF ULTRADIFFERENTIABLE FUNCTIONS AND THE BOUNDARY-VALUES OF HOLOMORPHIC-FUNCTIONS [J].
PETZSCHE, HJ ;
VOGT, D .
MATHEMATISCHE ANNALEN, 1984, 267 (01) :17-35