Quasianalytic Wave Front Sets for Solutions of Linear Partial Differential Operators

被引:18
作者
Albanese, A. A. [1 ]
Jornet, D. [2 ]
Oliaro, A. [3 ]
机构
[1] Univ Salento Lecce, Dipartimento Matemat E De Giorgi, I-73100 Lecce, Italy
[2] Univ Politecn Valencia, IUMPA, E-46022 Valencia, Spain
[3] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
关键词
Quasianalytic weight function; wave front set; propagation of singularities; ULTRADIFFERENTIABLE FUNCTIONS; CONVOLUTION-OPERATORS; ULTRADISTRIBUTIONS;
D O I
10.1007/s00020-010-1742-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we introduce and study Beurling and Roumieu quasianalytic (and nonquasianalytic) wave front sets, WF(*), of classical distributions. In particular, we have the following inclusion WF(*)(u) subset of WF(*)(Pu)boolean OR Sigma, u is an element of D'(Omega), where Omega is an open subset of R(n), P is a linear partial differential operator with coefficients in a suitable ultradifferentiable class, and Sigma is the characteristic set of P. Some applications are also investigated.
引用
收藏
页码:153 / 181
页数:29
相关论文
共 24 条
[1]  
[Anonymous], 1993, LINEAR PARTIAL DIFFE, DOI DOI 10.1142/1550
[2]  
[Anonymous], REND SEM MAT U POLIT
[3]  
BEURLING A, 1961, QUASIANALITICITY GEN
[4]  
Bolley P., 1987, Rendiconti, V45, P1
[5]  
Bolley P., 1981, Commun. Partial Differ. Equ, V6, P1057, DOI [10.1080/03605308108820205, DOI 10.1080/03605308108820205]
[6]  
BOLLEY P, 1978, ANAL MICROLOCALE ITE
[7]   Nonradial Hormander algebras of several variables and convolution operators [J].
Bonet, J ;
Galbis, A ;
Momm, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (06) :2275-2291
[8]  
Bonet J, 2000, ANN ACAD SCI FENN-M, V25, P261
[9]   A comparison of two different ways to define classes of ultradifferentiable functions [J].
Bonet, Jose ;
Meise, Reinhold ;
Melikhov, Sergej N. .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2007, 14 (03) :425-444
[10]  
Braun R.W., 1990, RESULTS MATH, V17, P206